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Chapter 1

1.1. The number of sample points are: a) 32760; b) 1560; c) 6840; d) 9; e)

∞.

1.3. 0.7748.

1.4. 10/21.

1.5. Yes, because the total possible number of initials is less than 20,000.

1.6. a) P (AB) + P (BC) + P (AC) − 3P (ABC).

1.7. a) EF cGc; b) EGF c; d) E ∪ F ∪ G.

1.9. a) Mutually exclusive; c) Not mutually exclusive.

1.10. a) Head on the first toss; c) Same outcome on the first two tosses.

1.11. 3/4.

1.13. 1/12.

1.14. 5/6.

1.15. (3!)4/9!.

1.16. a) 1020; b) 20!/210.

1.18. 35/216.

1.21. 1/3.

1.22. Use inclusion-exclusion formula with Ai as the event that the handy-

man gets day i of the week off, i = 1, 2, · · · , 7.

1.23. Just count the sample points.

1.25. Use inclusion-exclusion formula with Ai as the event that the ith

child gets chosen everyday of the week. For example, P (A1) = (2/3)7.

1.26. 1/2.

1.30. (8!)2

64×63×62×···×57
.

1.31. 3/8; 1/2; 19/32; 43/64.

1.33. (a) is more likely.

1.35. 1 − (7
6)

(10
6 )

.

1.36. 6!12!(36)
18!

.

1.37. Think of the complement of the event, which is that the 2m shoes are

of 2m different colors, and from each of these 2m colors, you would choose

either the left or the right shoe.

1.40. (n−r+1)r!(n−r)!
n!

.

1.41. 2(n−k+1)
(n+1)(n+2)

.
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1.43. a)
(26
13)

(52
13)

; b)
(26
13)

(52
13)(

39
13)

.

1.44. Use inclusion-exclusion formula with Ai as the event that the hand

of the ith player is void in the particular suit. For example, P (A1) =
(39
13)

(52
13)

.

1.47. 1/4.

Chapter 2

2.1. n ≥ 5.

2.2. Solve the equation m(m−1)···(m−n+1)
mn = 0.5 with m = (365)3. Use Stir-

ling’s approximation to find the root.

Chapter 3

3.1. 5/6.

3.2. 5/6.

3.3. 1/3.

3.4. P (B|A) ≥ 8/9.

3.6. 2.25% of days.

3.8. 10/19.

3.9. Consider the events Ai = North has i aces and South has 4 − i, and

look at P (A1| ∪4
i=1 Ai) and P (A3| ∪4

i=1 Ai).

3.10. 0.0006.

3.11.
(39

2 )
(59

2 )
.

3.12. The winning probability of Sam is .2 × ∑∞
j=0(0.8 × 0.7 × 0.6)j. Find

one of the other two probabilities, and then the third one by subtraction.

3.15. Consider the events Ai = The last face to show up is face i, and

observe that P (∪6
i=1Ai) = 6P (A1).

3.16. First solve the equation p4 + (1 − p)4 = 0.25.

3.18. 5/7.

3.19. 51293 weeks.

3.20. Both strategies are equally good.

3.21. 1/18; use Bayes’ theorem.

3.22. x/(x + y).

3.24. p/(6 − 5p).

3.26. a) 0.0011; b) 0.0441.
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3.27. 0.2308.

3.28. Consider the probability that the first cell remains empty and the other

two do not, and prove that this probability is 3y(1 − x)(1 − x − y). Then

find the required conditional probability.

3.29. List the sample points and find P (b2 < ac), where b is the off-diagonal

element, by direct counting.

3.30. 0.9375.

3.33. The probability of this event is about 0.0182, which is small.

3.34. (N−r)(N−r−1)
(N−1)(N−2)

.

Chapter 4

4.1. p(0) = p(4) = 1/16; p(1) = p(3) = 1/4; p(2) = 3/8.

F (x) = 0(x < 0); = 1/16(0 ≤ x < 1); = 5/16(1 ≤ x < 2); = 11/16(2 ≤ x <

3); = 15/16(3 ≤ x < 4); = 1(x ≥ 4).

4.2. p(0) = p(3) = 1/6; p(1) = 5/18; p(2) = 2/9; p(4) = 1/9; p(5) = 1/18.

4.3. p(0) = 1/2; p(1) = 1/4; p(2) = 1/8; p(3) = p(4) = 1/16.

4.4. Use the total probability formula; e.g., P (X = 1) = 1
6

∑6
n=1

n
2n , etc.;

E(X) = 7/4.

4.5. 6.5

4.7. (a) P (h(X) = ±1) = 4/13; P (h(X) = 0) = 5/13; E(h(X)) = 0.

4.8. First prove that the variance of X2 must be zero.

4.10. The expected value is 3n(n−1)5n−2

6n .

4.12. (a) 2/5; (b) 4/3.

4.14. 6.

4.15. n−2
216

.

4.17. Consider indicator random variables Ii of the events that the pair of

cards marked as i remain in the jar. Show that E(Ii) =
(2N−2

m )
(2N

m )
.

4.20. Show that P (X ≤ x) = 0 for x < 5 and is equal to
(x
5)

(10
5 )

for

x = 5, 6, · · · , 10. From here, find the pmf of X.

4.21. Show that P (X > n) = 365×364×···×(366−n)
(365)n for n = 2, 3, · · · , 365, and

then apply the tailsum formula.

4.22. 1.94 × 10−5.

4.23. log 2.
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4.26. 5.5.

4.27. Differentiate E(X − a)2 with respect to a.

4.28. Write
∑∞

n=1 nP (X > n) =
∑∞

n=1 n(
∑∞

j=n+1 p(j)) as
∑∞

j=2 p(j)(
∑j−1

n=1 n),

and simplify.

4.29. Mean = (n + 1)/2; variance = (n2 − 1)/12. Find medians separately

for odd and even n.

4.31. (a) At most 111,111 people; (b) at most 55,555 people.

4.33. First show that the maximum possible value of E(X2) if E(X) = µ

is µM . Then apply the Paley-Zygmund inequality.

4.34. Look at random variables whose pmf go to zero at the rate 1
xp+1 .

4.37. Show that {f(X1) ≤ c} and {g(X2) ≤ d} are independent events for

any c, d.

4.38. A sufficient condition is that E(X1) = E(X2) = 0.

Chapter 5

5.1. pgf is s/(2 − s), |s| < 2; the mgf is et/(2 − et), t < log 2.

5.2. For example, G(s) =
√

s, s ≥ 0.

5.4. ebtψ(at).

5.5. Use the fact that
√

x ≤ x for all x ≥ 1.

5.7. Use the fact that E[X(X − 1) · · · (X − k + 1)] = G(k)(1). For example,

σ2 = G(2)(1) + G(1)(1) − [G(1)(1)]2.

5.9. Use the fact that etx is a convex function of x for any t.

5.11. κ1 = p; κ2 = p(1 − p); κ3 = p − 3p2 + 2p3; κ4 = p − 7p2 + 12p3 − 6p4.

Chapter 6

6.1. 0.2461(n = 10); 0.1445(n = 30); 0.1123(n = 50). The limit can be

proved to be zero.

6.2. p(0) = p(3) = 0.12; p(1) = 0.38. The distribution is not Binomial.

6.3. 0.5367; 0.75. The most likely value is zero.

6.5. 0.6651(n = 1); 0.6187(n = 2); 0.5973(n = 3); .5845(n = 4); 0.5757(n =

5).

6.8. For p ≥ .5.

6.9. 15/16.

6.10. 0.0107.
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6.11. (k/N)n−((k−1)/N)n, k = 1, 2, · · · , N for with replacement sampling;
(k

n)−(k−1
n )

(N
n)

, k = n, · · · , N for without replacement sampling.

6.12. Compute a Poisson approximation with n = 100 and p =
(200
100)
2200 =

0.05635. The final answer is 0.0611.

6.14. The probability of getting an A is (0.2)5; the probability of getting a

B is
(

5
4

)
(0.2)5(0.8) +

(
6
4

)
(0.2)5(0.8)2, etc.

6.16. Binomial(200, .75).

6.19. Find the sum
∑∞

k=0 P (X = Y = k) and simplify it to e−λ(1 −
p)nn!

( ∑n
k=0(

λp
1−p

)k/[(k!)2(n − k)!]
)
.

6.20. Solve two appropriate equations to first show that p = 0.9881, n = 86,

and so the variance is np(1 − p) = 1.01.

6.23. 0.0707.

6.24. 0.1538.

6.26. 0.0248.

6.27. Use the skewness and kurtosis formulas for a general Poisson distri-

bution; the answers are 0.4472; 0.5.

6.28. No. You have to first prove that if three such values exist, they must

be consecutive integers.

6.30. Compute a Poisson approximation to P (X ≥ 2). The answer is

1.7993 × 10−7.

6.32. 0.0479.

6.33. No.

6.34. 1+e−2λ

2
.

6.37. (a) 0.1839; (b) 0.0803; (c) 0.9810.

6.38. 0.2212.

6.42. Expand (q+p)n and (q−p)n by using the Binomial expansion theorem

and add, with q = 1 − p.

Chapter 7

7.1. It is a density for k = 2.

7.2. c = 1.

7.3. (a) c = 2; (b) For x > 0, F (x) = 1/2 + x2 − x4/2; (c) 0.28125; 0.28125;

0.4375.
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7.4. F (x) = 0(x < 0), = p(1−cos(x))+(1−p) sin x(0 ≤ x ≤ π
2
), = 1(x > π

2
).

Median solves p(1− cos(x))+ (1− p) sin x = 0.5. If p = 0.5, the median is π
4
.

7.6. (a) c = 4/16875; (b) 40.74%; 11.11%; (c) 9 minutes.

7.7. F (x) = 0(x < 0), = x/5(0 ≤ x ≤ 2.5), = 1(x > 2.5); expected payout

is $1875.00. This distribution is a mixed distribution.

7.9. Density function of the ratio of the two lengths is 2
1+v2 , 0 < v < 1;

expected value is log 2 = 0.6931. You should find the density by first finding

the CDF.

7.10. One example is f(x) = 1
2
√

x
, 0 < x < 1.

7.11. One example is f(x) = 1
x2 , x ≥ 1.

7.13. Quantile function is 1
1−p

.

7.16. (a) Mean = 0; variance = 1/2.

7.17. c = 12/5; mean is 13π
100

and the variance is 5π2

224
− 169π2

10000
.

7.18. Quantile function is tan
[
(p − 1

2
)π

]
. 75th percentile equals 1.

7.20. Use the trigonometric identity arctanx + arctan y = π + arctan x+y
1−xy

for all x, y > 0, xy > 1, and plug in suitable special values of x, y.

7.21. The density function of Y = 1
X2 is e

− 1
2y y−3/2√

2π
, y > 0.

7.23. First prove that E[f(X)] must belong to the range space of f and

then use the intermediate value theorem. In the standard normal case,

x0 =
√

log 2.

7.24. 4.761905.

7.25. Use the formula for the area of a triangle in pp 439 of the text.

7.27.
2α/2Γ(α+1

2
)√

π
.

7.30. µ =
∫ ∞
0 [e−

∫ x

0
h(t)dt]dx.

7.32. n
n+1

.

7.33. 1
n
.

7.35. Use Lyapounov’s inequality suitably.

7.36. Use Jensen’s inequality suitably.

7.37. I(x) = 0(x ≤ 1), = x − log x − 1(x > 1).

Chapter 8

8.1. a = 1/2, b = 1/4.

8.2. a = −1, b = 5.
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8.3. 1/3.

8.5. (a) x3 − 3x is a strictly monotone function of x on (0, 1), taking values

in (−2, 0). The equation x3 − 3x = y has a unique real root, say x = g(y).

The density function of Y = X3 − 3X is |g′(y)|,−2 < y < 0.

(b) fY (y) = 1√
y
, 0 < y < 1/4;

(c) fY (y) = 1

2πy3/4
√

1−√
y
, 0 < y < 1.

8.6. (a) X can be simulated as X = U1/5;

(b) X can be simulated as X =
(

sin π
2
U

)2

;

(c) X can be simulated as X = 2 − log
(
2(1 − U)

)
if U > 1

2
and X =

2 + log
(
2U

)
if U ≤ 1

2
.

8.7. Substitute β = 26 − α into the equation F (0.2) = 0.22, and solve for

α numerically. Then find β = 26 − α.

8.9. The nth moment equals

∑n

j=0 (n
j)

1
(j+1)(n−j+1)

2n .

8.11. Write the mean absolute deviation as E(|X − µ|) = c
∫ m

m+n

0 ( m
m+n

−
x)xm−1(1− x)n−1dx + c

∫ 1
m

m+n
(x− m

m+n
)xm−1(1− x)n−1dx, and then integrate

term by term by expanding (1 − x)n−1. Here c is the normalizing constant

of the Beta density.

8.12. α = 0.9825, β = 10.8548, P (X > .2) = 0.0862. This problem requires

numerical work.

8.14. e−1/2.

8.15. 0.4008.

8.16. The density is 1
2
e−(y−1)/2, y ≥ 1.

8.17. Use the fact that
∑n

i=1 Xi ∼ G(n, 1) and then follow the same steps

as in 8.16.

8.18. 1 − e−2.

8.21. The mean is
∏n

i=1 mi and the second moment is
∏n

i=1 mi(mi + 2).

8.23. The number of centuries is − log(1−.51/N )
log 2

, where N = 1025. This works

out to approximately 83.6 centuries.

8.24. P (X > 2λ) = e−2, which does not depend on λ.

8.25. (a) The expected profit is E[(c2 − c1) min(X, t)] − c3t;

(b) The optimum value of t satisfies 1−F (t) = c3
c2−c1

, provided 0 < c3
c2−c1

< 1.

8.28. The density function of Y = e−X is a standard exponential density.
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8.29. The density function of Y = log log 1
X

is e−ey
ey,−∞ < y < ∞.

8.30. The density function of Y = θ
X

is αyα−1, 0 < y ≤ 1.

8.31. (a) 0.0465; (b) 0.0009; (c) this is the probability that X > Y where

X,Y are independent Poisson variables with means 4/3 and 1; see Theorem

6.13 in text for more details on how to compute it.

8.32.
√

s
t
.

8.33. (a) The answer is yes; (b) the answer is no.

8.34. The distribution is Bin(n, u
t
).

Chapter 9

9.1. 0.4772; 1; 0.1357; 0.5.

9.2. 2; 15.

9.3., The density of Y = 1
Z

is 1
y2

√
2π

e
− 1

2y2 ,−∞ < y < ∞. It is uniformly

bounded.

9.4. Z + 1 : all 1; 2Z − 3 : all -3; Z3 : all zero.

9.5. The density of Y = φ(Z) is 2√
− log(2πy2)

, 0 < y ≤ 1√
2π

.

9.7. 0.8230.

9.9. Φ(x) = 1+erf(x/
√

2)
2

.

9.10. A : 6.68%; B : 24.17%; C : 38.3%; D : 28.57%; F : 2.28%.

9.12. If X denotes the diameter of a ball bearing, then we want E(X|1.48 ≤
X ≤ 1.52) and Var(X|1.48 ≤ X ≤ 1.52). These are the mean and the vari-

ance of a truncated distribution (section 4.12). For example, E(X|1.48 ≤
X ≤ 1.52) equals

∫ 1.52

1.48
xf(x)dx

P (1.48≤X≤1.52)
. This is equal to 1.5 (why?). The variance

calculation should be done by first calculating E(X2|1.48 ≤ X ≤ 1.52).

9.13. Y = g(Z) has a mixed distribution. Its CDF is FY (y) = 0(y < −a), =

Φ(−a)(y = −a), = Φ(y)(−a < y < a), = 1(y ≥ a).

9.14. 7.999 oz.

9.15. First prove that E[Φ(X)] = P (Z < X), where Z is an independent

standard normal variable. Since Z − X ∼ N(−µ, 1 + σ2), P (Z < X) =

P (Z − X < 0) = Φ( µ√
1+σ2 ).

9.18. Median = eµ; mode = eµ−σ2
.

9.20. 0, 10, 0, 300.

9.21. 0.4778.
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9.22. (a) 0.0037; (b) 0.3632.

9.23. 15367.

9.24. About 0.00315 at x = 1.65.

Chapter 10

10.1. Exact = 0.3770; normal approximation without continuity correction

= 0.2643; normal approximation with continuity correction = 0.3759.

10.2. Exact = 0.1188; normal approximation = 0.1320.

10.3. 0.7887.

10.5. 0̇.6124. The first person has to make at least 442 correct predictions

and the second person has to make at least 434 correct predictions. Find the

probability of the intersection of these two events.

10.6. P (Z ≥ 375.5−750×.53√
750×.53×.47

) = 0.9463.

10.7. 0.0485.

10.9. This equals P (
∑n

i=1(Xi − X2
i ) > 0). Use the central limit theorem

on these new variables Xi − X2
i . The answers are: n = 10 : 0.0339;n = 20 :

0.0049;n = 30 : 0.0008.

10.10. 271 reservations can be allowed.

10.12. 0.0314.

10.13. 36 rolls should suffice.

10.15. First show that the mean and the variance of log X are -1 and 1.

The final answers are 0.3228 for (a) and 0.0465 for (b).

10.16. 0.0058.

10.19. Formula for 99% confidence interval is (X+3.315)±√
10.99 + 6.63X.

Formula for 95% confidence interval is (X + 1.92) ± √
3.69 + 3.84X. For

X = 5, 95% confidence interval is 6.92± 4.78, and 99% confidence interval is

8.315 ± 6.64.

10.22. (a) .1n; (b) .99n; (c) 0.8215.

10.23. Use the CLT for each of the totals scored by Tom and Sara and then

find a normal approximation for the difference of these two totals. The final

answer is 0.1271.

10.24. (a) P (Z > 4) ≈ 0; (b) use normal approximation for Binomial with

n = 25, p =
∫ 1
0.54 6x(1 − x)dx; the final answer is 0.9649.

10.26. To find the third moment of Sn, expand (X1 + X2 + · · · + Xn)3 and
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take expectations term by term. Then simplify.

10.27. The roundoff error on one transaction is uniformly distributed on

{−50,−49,−48, · · · , 0, · · · , 49}. This gives µ = −0.5. Now find σ2, and then

use a normal approximation to 1 − P (−5 ≤ Sn ≤ 5), with n = 100.

10.28. 0.2514.

10.29. 0.0002.

10.30. It is about 4.5 times more likely that you will get exactly 50 heads

than that you will get more than sixty heads.

10.32. It is just a bit more likely that you will get exactly 20 sixes.

Chapter 11

11.1. The joint pmf of (X,Y ) is p(2, 0) = 2/7, p(3, 0) = p(3, 2) = p(4, 2) =

p(6, 1) = p(6, 2) = 1/7, and p(x, y) = 0 otherwise. E(X) = 26/7; Var(X) =

122/49; E(Y ) = 1; Var(Y ) = 6/7; ρX,Y ≈ 0.59.

11.2. The joint pmf of (X,Y ) is p(0, 4) = p(3, 1) = p(4, 4) = 1/16, p(1, 2) =

1/4, p(2, 0) = 3/8, p(3, 2) = 3/16, and p(x, y) = 0 otherwise. E(Y ) = 23/16.

11.3. (a) c = 1/36; (b) They are independent; (c) E(X) = E(Y ) =

2, E(XY ) = 4.

11.4. (a) c = 1/25; (b) They are not independent; (c) E(X) = 53/25; E(Y ) =

67/25; E(XY ) = 147/25.

11.6. The joint pmf of (X,Y ) is p(1, 3) = p(1, 4) = p(1, 5) = p(2, 3) =

p(2, 5) = p(2, 6) = p(3, 4) = p(3, 5) = p(3, 7) = p(4, 5) = p(4, 6) = p(4, 7) =

1/12, and p(x, y) = 0 otherwise. X,Y are not independent.

11.7. The direct method of calculating E(X|Y = y) is to use the formula

E(X|Y = y) =
∑

x
xp(x,y)∑

x
p(x,y)

. In this problem, p(x, y) =
(

13
x

)(
39

13−x

)(
13−x

y

)(
26+x
13−y

)
, x, y,≥

0, x + y ≤ 13. However, you can avoid the calculation by logically arguing

how many clubs South (or any other player) should get, if y clubs have al-

ready been picked up by North. You can also logically see that E(X|Y = 3)

and E(Y |X = 3) must be the same.

11.9. E(Y ) = 0.2.

11.10. Var(X) = λ2

12
+ λ

2
.

11.11. Use the fact that P (X > Y ) and P (Y > X) are equal in this prob-

lem, and the fact that P (X > Y ) + P (Y > X) + P (X = Y ) = 1. Now find

P (X = Y ) and then conclude that P (X ≥ Y ) = 1
2−p

; P (X > Y ) = 1−p
2−p

.
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11.13. pmf of X +Y is P (X +Y = 2) = P (X +Y = 8) = 0.04; P (X +Y =

3) = P (X+Y = 7) = 0.12; P (X+Y = 4) = P (X+Y = 6) = 0.21; P (X+Y =

5) = 0.26.

11.14. (a) They are not independent; (b) 0; (c) 0.

11.17. X ∼ Poi(λ + η); Y ∼ Poi(µ + η). X and Y are not indepen-

dent. The joint pmf is found by simplifying the sum P (X = x, Y = y) =∑min(x,y)
w=0

e−λλx−w

(x−w)!
e−µµy−w

(y−w)!
e−ηηw

w!
.

11.18. (a) 3.5 + y; (b) 3.5y; (c) 5369
36

y2.

11.20. The joint pmf of (X,Y ) is p(2, 0) = 1/2; p(3, 0) = p(3, 2) = p(4, 0) =

p(4, 2) = 1/8. E(X|Y = 0) = 3.5. You can argue logically what E(X|Y = 2)

should be.

11.22. You can prove this by using the result in problem 11.26. Show, by

using problem 11.26, that E(XY ) = EY [E(XY |Y = y)] ≥ E(Y )E(X), and

so Cov(X,Y ) ≥ 0.

11.23. Use the two iterated expectation formulas E(X) = EY [E(X|Y = y)]

and E(XY ) = EY [E(XY |Y = y)].

11.24. Without loss of generality, you may assume that each of X,Y takes

the values 0, 1. Now try to represent the covariance between X and Y in

terms of P (X = 0, Y = 0) − P (X = 0)P (Y = 0). Finally show that if

P (X = 0, Y = 0) = P (X = 0)P (Y = 0), then that would force X,Y to be

independent.

11.26. First show that for any two random variables U, V with finite variance,

Cov(U, V ) =
∫ ∞
−∞

∫ ∞
−∞[P (U ≥ u, V ≥ v) − P (U ≥ u)P (V ≥ v)]dudv. Apply

this to U = g(X), V = h(X).

11.27. The joint mgf is (1
6
et1 + 1

6
et2 + 2

3
)4. The value of the covariance is

−1
9
.

11.28. The joint mgf is ψ(t1, t2) = e−λ−µ−η+λet1+µet2+ηet1+t2 . Find E(XY )

by evaluating ∂2

∂t1∂t2
ψ at (t1, t2) = (0, 0).

Chapter 12

12.1. (a) c = 4; (b) They are independent; (c) fX(x) = 2x, 0 ≤ x ≤
1; fY (y) = 2y, 0 ≤ y ≤ 1, E(X) = E(Y ) = 2/3; E(XY ) = 4/9.

12.2. (a) c = 24; (b) They are not independent; (c) fX(x) = 12x(1−x)2, 0 ≤
x ≤ 1; fY (y) = 12y(1 − y)2, 0 ≤ y ≤ 1; E(X) = E(Y ) = 2/5; E(XY ) = 2/15.
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12.3. (a) c = 1; (b) They are not independent; (c) fX(x) = e−x, x >

0; fY (y) = ye−y, y > 0; E(X) = 1; E(Y ) = 2; (d) E(X|Y = y) = y/2; (e)

E(Y |X = x) = x + 1.

12.5. (a) c = 3
4π

; (b) No; (c) fX(x) = 3
4
(1 − x2),−1 ≤ x ≤ 1; you can now

find fY (y), fZ(z) by using a suitable symmetry in the formula for the joint

density; (d) E(X|Y = y) = 0 for any y; (e) Similarly, E(Y |X = x) = 0 for

any x; (f) 0.

12.6. y2 − y + 1
2
.

12.8. 1
2

(you can get the answer without doing any hard calculations).

12.9. E(X
√

X + Y ) = 15
8

√
π; use the fact that X

X+Y
and X + Y are inde-

pendent.

12.10. 3.

12.11. 18/55.

12.12. The joint distribution of (X,Y ) does not have a density. The joint

distribution is a distribution on the line segment y = 2x, 0 ≤ x ≤ 1. You can

write the joint CDF of (X,Y ) as P (X ≤ x, Y ≤ y) = P (X ≤ x, 2X ≤ y) =

P (X ≤ x,X ≤ y
2
) and simplify this last line.

12.14. E(Xn) = 1
2n → 0.

12.16. 0.0294.

12.17. a, b satisfy a(σ2
1 + ρσ1σ2) + b(σ2

2 + ρσ1σ2) = 0.

12.18. 1/24.

12.20. 1/4. Note the similarity of this problem to Example 12.7 in the text.

12.21. 0.2248.

12.22. If we denote X+Y = U,X−Y = V, Y = W , then (U, V,W ) does not

have a joint density. The joint distribution of (U, V,W ) is a distribution on

the plane w = u−v
2

. You can characterize the joint distribution of (U, V,W )

by writing the joint distribution of (U, V ) which is a bivariate normal, and

the conditional distribution of W given U = u, V = v is a one point distri-

bution at w = u−v
2

.

12.23. The correlation coefficient between X and X2 is µ
√

2√
2µ2+σ2

.

12.25. (a) Y ∼ N(1, 2); (b) 1√
2
; (c) X|Y = y ∼ N(y−1

2
, 1

2
).

12.26. The mean is 3/4, and the variance is 3/80.

12.27. (a) 3
2π

√
1 − x2 − y2, x2 + y2 ≤ 1; (b) 3

4
(1 − x2),−1 ≤ x ≤ 1.
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12.29. The mean residual life is E(X|X > x) = µ +
σφ(x−µ

σ
)

1−Φ( x−µ
σ

)
.

12.30. You have to find E(Y |X > 140). This is different from E(Y |X =

140). E(Y |X > 140) equals

∫ ∞
−∞

∫ ∞
140

yp(x,y)dxdy

P (X>140)
. p(x, y) is a bivariate normal

density, and you will be able to simplify the integral in the numerator. The

denominator is easy because X is marginally normal.

12.31. (a) The densities of U, V,W are 3(1 − u)2(0 < u < 1), 6v(1 − v)(0 <

v < 1), 3w2(0 < w < 1). (b) U
V

∼ U [0, 1] and T = V
W

has the density

2t(0 < t < 1). U
V

and V
W

are independent. (c) E(U
V

) = 1/2; E( V
W

) = 2/3.

12.33. U has an Exponential density with mean 1
3
. The densities of V,W

are 6e−2v(1 − e−v)(v > 0) and 3e−w(1 − e−w)2(w > 0). T = W − U has the

density 2e−t(1 − e−t)(t > 0).

12.34. (a) The epoch T of the last departure has the density 4
λ
(e−t/λ −

e−2t/λ − t
λ
e−2t/λ); (b) 1/2; (c) The total time T spent by Mary at the post

office has the density 2
λ
e−t/λ(1 − e−t/λ).

12.36. (a) (0.9)n(1 + n
9
); (b) Find the smallest n such that 2(0.99)n −

(0.98)n ≤ .01. This gives n = 527.

Chapter 13

13.1. U = XY has the density fU(u) = 2(1− u), 0 ≤ u ≤ 1; V = X
Y

has the

density fV (v) = 2
3
(0 ≤ v ≤ 1), = 2

3v3 (v > 1).

13.2. Z = X +Y has the density fZ(z) = z2(0 ≤ z ≤ 1), = 2z− z2(1 < z ≤
2). V = X − Y has the density fV (v) = 1 − v2(−1 ≤ v ≤ 0), = (1 − v)2(0 <

v ≤ 1). W = |X − Y | has the density fW (w) = 2(1 − w), 0 ≤ w ≤ 1.

13.3. (a). No; (b) c = 1/2; (c) Z = X + Y has the density fZ(z) =
1
2
z2e−z, z > 0, which is a Gamma density.

13.4. (a) No; (b) c = 8; (c) U = XY has the density fU(u) = −u log u
2

, 0 <

u < 1.

13.5. T = NXY has a mixed distribution. T can be equal to zero with a

positive probability; P (T = 0) = 1
4
. Conditional on T > 0, T has a density.

You have to find this by conditioning separately on N = 1 and N = 2, and

take the mixture of the two densities that you will get for 1 × (XY ) = XY

and 2 × (XY ) = 2XY . To complete this problem, first show that V = XY

has the density fV (v) = − log v, 0 < v < 1, and then proceed as outlined
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above.

13.6. P (m = X) = 1 + 2a2−3a(b+c)
6bc

; P (m = Z) = a(3b−a)
6bc

; P (m = Y ) can be

found by subtraction.

13.8. E( XY
X2+Y 2 ) = E( XY√

X2+Y 2 ) = 0.

13.9. It is better to first find the CDF of X2 + Y 2. This is easy for t ≤ 1,

but must be done carefully for t > 1. The CDF of X2 + Y 2 is P (X2 + Y 2 ≤
t) = πt

4
(0 < t ≤ 1), and P (X2 + Y 2 ≤ t) = t(π

4
− arctan

√
t − 1) +

√
t − 1 for

1 < t ≤ 2. Of course, for t ≥ 2, P (X2 + Y 2 ≤ t) = 1.

To evaluate E(
√

X2 + Y 2), apply its definition, and find the answer by nu-

merical integration.

13.11. The point P − Q has the planar coordinates (U, V ) = (X − Y, Z −
W ). First show that the joint density of (U, V ) in polar coordinates is
2
π2 (arccos( r

2
) − r

2

√
1 − r2

4
), 0 ≤ r ≤ 2,−π < θ < π. This will lead to the

density of r as 4
π
r(arccos( r

2
)− r

2

√
1 − r2

4
), 0 ≤ r ≤ 2. We need E(r), which is

4
π

∫ 2
0 r2(arccos( r

2
)− r

2

√
1 − r2

4
)dr. This integral equals 128

45π
= 0.905415, which

is the needed average distance.

13.12. 1/6.

13.13. P (X
Y

< 1) = 1/4; P (X < Y ) = 1/2. They would have been the

same if Y was a nonnegative random variable.

13.14. The answer is 2
π

arctan(σ
τ
).

13.16. By using the general formula for the density of a product in the text,

first show that the density of U = XY is of the form c1c2u
γ−1

∫ 1
u xα−δ−γ(1 −

x)β−1(x − u)δ−1dx, where c1, c2 are the normalizing constants of the Beta

densities for X,Y . Now simplify this expression in terms of the 2F1 Hyper-

geometric function.

13.18. The density of U = XY is fU(u) = 2
π

log |u|
u2−1

,−∞ < u < ∞.

13.20. This can be proved by simply using the Jacobian formula. You have

to be a bit careful and take the cases Y ≤ 1
2

and Y > 1
2

separately, and then

put the two cases together.

13.21. The density of W = X + Y + Z is w2g(w)
2

, w > 0.

13.22. The required density is 3w2

(1+w)4
, w > 0.

13.24. The density of Z = X + Y is fZ(z) = 1 − e−z(0 ≤ z ≤ 1), =

(e − 1)e−z, z > 1.

13.25. The density of Z = X + Y is fZ(z) = Φ( z−µ
σ

) − Φ( z−1−µ
σ

).
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13.27. Given z ≥ 0, let n be such that n ≤ z < n + 1. Then the density of

Z = X + Y at z is fZ(z) = e−λλn

n!
.

13.28. (a) c = 1
2π

; (b) No; (c) r has the density r
(1+r2)3/2 , r > 0, θ ∼ U [−π, π],

and r, θ are independently distributed; (d) 1 − 1√
2
.

13.30. The correlation is 0.263038.

13.31. The correlation is 0.

13.32. The density of Z = X + Y is fZ(z) = e−z/µ−e−z/λ

µ−λ
, z > 0; the density

of W = X − Y is fW (w) = 1
λ+µ

ew/µ(w < 0), and = 1
λ+µ

e−w/λ(w > 0).

13.35. If X ∼ U [0, 1], then n1, n2, · · · are each uniform on {0, 1, 2, · · · , 9},
and they are independent.

13.36. The integer part of X and the fractional part of X are independent

in this case. The integer part has the pmf P (bXc = n) = e−n(1 − e−1), n =

0, 1, 2, · · ·, and the fractional part has the CDF P ({X} ≤ y) = ey−1
ey−1(e−1)

, 0 ≤
y ≤ 1. Note the interesting fact that the integer part therefore has a Geo-

metric distribution.

13.38. The density of R =
√

X2
1 + X2

2 + · · · + X2
n is fR(r) =

4Γ(n+3
2

)√
πΓ(n

2
)

rn−1

(1+r2)(n+3)/2 , r >

0. You can find the density of X2
1 + X2

2 + · · · + X2
n from this by a simple

transformation.
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Hints and Answers to Supplementary Problems

Appendix I: Word Problems

I.1. 17576; 18252.

I.2. 0.01; 0.72; 0.27.

I.3. 11/16.

I.4. 1/32.

I.5. 1/6; 1/3; 1/2.

I.7. 0.988.

I.8. The winning probabilities of A,B,C are 36/91, 30/91, 25/91 respec-

tively.

I.11. 0.0435.

I.12. 9/29.

I.14. 0.1054.

I.16. For with replacement sampling, the probability is 1/9; for without

replacement sampling, the probability is 3/55.

I.17.
(

4
1

)(39
13)

(52
13)

−
(

4
2

)(26
13)

(52
13)

+
(

4
3

)(13
13)

(52
13)

.

I.19.
∑10

x=5
( 39

x−1)(
13
1 )

(52
x )

.

I.20.
(6
4)∑6

x=3 (6
x)

.

I.21. 0.30199.

I.23. 4!
44 .

I.26.
∑10

x=0

[
(25

x )( 25
10−x)

(50
10)

]2

.

I.28. 1 − (0.6)5.

I.29. 1/5.

I.30. Denoting the selection of a green ball by G and that of a white ball by

W , the favorable sample points are GGGGG,GGGWG,GWGGG,GWGWG.

Compute the probability of each of these sample points and add.

I.31. 1/3.

I.33. 0.8740; 0.5282; 0.559.

I.35. (a) 2; (b) all numbers in [1, 2] are medians of the distribution; (c)

First prove that
∑∞

n=1
n(n−1)

2n = 4.

I.36. Var(|X|) = E(X2) − [E(|X|)]2 ≤ E(X2) − |E(X)|2 (since E(|X|) ≥
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|E(X)|) = Var(X).

I.38. This is the negative hypergeometric distribution (see Exercise 6.25).

(a) To find the mass function, show that P (X > x) =
(39

x )
(52

x )
, x = 1, 2, · · · , 39,

and then find the mass function by subtraction; (b) By the tailsum formula,

E(X) = 1 +
∑39

x=1
(39

x )
(52

x )
= 53/14 = 3.786.

I.40. Consider a two valued random variable X with the mass function

P (X = µ − 0.005) = 1 − δ, P (X = N) = δ. If δ = 0.005
N+0.005−µ

, then X has

mean µ. Now take N to be sufficiently large.

I.41. Since E(X) = µ = E(X2), and E(X2) ≥ (E(X))2 for any ran-

dom variable X, it follows that µ ≥ µ2, i.e., 0 ≤ µ ≤ 1. Therefore,

Var(X) = E(X2) − (E(X))2 = µ − µ2 = µ(1 − µ) ≤ 1
4
.

I.44. (a) E(X) = E(Y ) = 4/3; (b) Var(X) = Var(Y ) = 8/9; (c)

P (Z = 0) = 4/9; P (Z = 1) = 14/27; P (Z = 2) = 1/27; (d) E(Z) = 16/27.

I.45. The variance is 11.67.

I.47. Mean = 4.405; variance = 3.63.

I.49. For example, take X such that P (X = 0) = 1
104+1

, P (X = 100.01) =
104

104+1
.

I.50. 4
(36
13)

(52
13)

.

I.51. (a) 10; (b) Show that P (N > n) = 10×9×···×(11−n)
10n , n = 1, 2, · · · , 10.

Then, by the tailsum formula, E(N) = 2 +
∑10

n=2 P (N > n).

I.52. 91/6.

I.54. 1 − log 2.

I.55. The mgf equals ψ(t) = 1+et+e2t+e3t+e4t+e5t

5e2t . The mean is zero.

I.56. E(Y ) =
2(n

2)+4(n
4)+···

2n = n
4
; the mgf of Y equals ψ(t) = 1

2
+

1+(n
2)e2t+(n

4)e4t+···
2n .

I.57. The mgf of XY is 1 − p + peλ(et−1).

I.59. The mgf is
∏n

i=1(1 − pi + pie
t); the variance is

∑n
i=1 pi(1 − pi).

I.60. X takes the values ±1 with probability 1
2

each,

I.62. (a) The mgf is e−λ ∑n
x=0

(λet)x

x!
+ P (X > n); (b) The limit equals the

mgf of X itself, i.e., eλ(et−1).

I.64. The nth factorial moment is λn.

I.65. (a) c = 1
8
; (b) p(0) = 1/8; p(1) = 1/2; p(2) = 1/4; p(3) = 1/8; (c)

11/8.
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I.66. e(s−1)λ.

I.68. Yes, it is possible. Take a random variable X with the stated property

and take Y = −X.

I.70. .1662

I.71. For sending one parcel, the expected cost is $9.50. For sending two

parcels, the expected cost is $11.50. It is better to send one parcel.

I.73. The distribution of X is a binomial with parameters 3 and 1
36

. There-

fore, the mean is 3
36

and the variance is 3 1
36

35
36

.

I.75. e−25/6.

I.77. p
θ
.

I.79. (a) 0.0835; (b) 0.0207; (c) k = 15 in each case.

I.80. (a)
(39
13)

(52
13)

; (b) 0.3664; (c) 0.3658.

I.82. P (max(X,Y ) ≤ n) = 1− .4n − .5n + .2n, n ≥ 0. By using the tailsum

formula now, E(max(X,Y )) =
∑∞

n=0(.4
n + .5n − .2n) = 29

12
= 2.42.

I.83. The mgf of X − Y is e−λ−µ+λet+µe−t
.

I.85. The first four moments are 2, 6, 22, 94.

I.86. The first four moments are 5, 27.5, 162.5, 1017.5.

I.87. 0.

I.88. Use the tailsum method to find the mean.

I.90. Suppose the couple has N children. First prove that P (N > n) =∑r−1
x=n−r+1

(
n
x

)
px(1 − p)n−x, r ≤ n ≤ 2r − 2. Then find the pmf of N by sub-

traction.

I.91. 2587
630

= 4.11.

I.92. No; because by problem I.93, Var(XY ) > Var(X)Var(Y ) = E(X)E(Y ) =

E(XY ).

I.94. X must be ±1 with probability 1
2

each.

I.96. 1.06.

I.97. (a) The density is f(x) = 0(x < 1), = (x − 1)/3(1 ≤ x ≤ 2), =

1/3(2 ≤ x ≤ 4), = (5 − x)/3(4 ≤ x ≤ 5), = 0(x > 5); (b) The CDF is

F (x) = 0(x ≤ 1), = (x − 1)2/6(1 < x ≤ 2), = x/3 − 1/2(2 < x ≤ 4), =

5x/3 − (x2 + 19)/6(4 < x < 5), = 1(x ≥ 5); (c) 3; (d) 32
3
.

I.98. (a) c = 4; (b) 0; 0.75; 0.75; P (C|A ∩ B) = 0
0

and is undefined.

I.100. F (x) = 0(x < 0), = 0.9(x = 0), = 1 − 1
10

e−
x
2 (x > 0).

I.102. (a) 0; (b) 1; (c) prove that x3 − x2 − x − 2 > 0 if x > 2. So the
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required probability is P (X > 2); (d) 1
2
(1 + e−3); (e) 0.

I.103. The density of Y = e−X2
is f(y) = 1

2y
√

− log y
(1

e
≤ y < 1), and 0

otherwise.

I.105. The density of Y = g(X) is f(y) = e−y + e
− 1

y

y2 , 0 < y < 1 and 0

otherwise.

I.107. Y has the CDF F (y) = 1+y
2

, (−1 ≤ y ≤ 1), = 0(y < −1), = 1(y > 1).

In other words, Y has the same distribution as Z.

I.109. (a) σ equals 1.53; (b) 6.96; (c) 0.9995.

I.110. The shortest interval with probability ≥ .5 under each of these three

distributions is [−1, 1].

I.111.
√

.6.

I.114. Mean equals 1
n
, median equals log 2

n
, and variance equals 1

n2 .

I.115. 1
3
.

I.116. 4.

I.117. − log(1
2
− 1

π
arctan X) is one such transformation.

I.118. (a) c = 1
π
; (b) π2−4

π
.

I.120. 2 square inches.

I.121. 2
√

2π.

I.123. n ≥ log .1
log(Φ(4))

≈ 72702.

I.124. a < 1
2
.

I.125. The function has a minima of zero and a maxima of 1.

I.127. Hazard rates with a bathtub shape can be generated by using den-

sities of the form cxd−1e−xp
, x > 0, p, d > 0. Of course, this is not the only

possible way to generate bathtub hazard rates.

I.129. (0.9)10.

I.130. (0.9544)10.

I.131. The deciles are e−1.28, e−0.84, e−0.525, e−0.253, 1, e0.253, e0.525, e0.84, e1.28.

I.132. The name is lognormal.

I.133. No, because the mean µ would be zero, and then the three percentile

values become inconsistent.

I.135. For a 90% confidence interval, n approximately 271σ2; for a 95%

confidence interval, n approximately 384σ2; for a 99% confidence interval, n

approximately 663σ2.

I.136. 0.6748.
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I.137. For Z5, the mean, median, and mode are all zero; for |Z|, the mean

is
√

2
π
, the median is 0.675, and the mode is zero; for |Z − 1|, the mean is√

2
πe

+ 2Φ(1) − 1, the median is 1.05, and the mode is zero.

I.139. The distribution is approximately a normal distribution with mean
50
6

and variance 550
36

.

I.141. n approximately 3393.

I.143. 0.0793.

I.144. A normal approximation cannot be used here, because this density

does not have a finite mean.

I.145. 0.0031.

I.149. The conditional expectation of the number of heads in the last 15

tosses given that the number of heads in the first 15 tosses is x is given by

the formula 5
2

+ 2
3
x.

I.150. By using the iterated variance formula, you can easily prove that

Var(Y ) ≥ Var(X).

I.151. (a) Each of X,Y, Z takes the values ±1 with probability 1
2

each; (b)

each of these joint pmfs assigns probability 1
4

to the four points (±1,±1); (c)

each correlation is zero; (d) 1
2
.

I.152. (a) The variance is 3n
4

; (b) the limit is zero by Chebyshev’s inequality.

I. 153. The percentages of A,B,C,D, and F would be 2.28%, 13.59%, 68.26%, 13.59%

and 2.28%. So the required probability is 40!
(8!)5

(0.0228)8(0.1359)8(0.6826)8(0.1359)8(0.0228)8.

I.155. 0.

I.156. (a) 2(1 − 2−k); (b) min(x, k); (c) The covariance between X and

min(X, k) is 2 − 2(k + 1)2−k. The variance of min(X, k) is 2 + 21−k −
41−k − 4k2−k. Using these, the correlation between X and min(X, k) is

2k−k−1√
4k−(2k−1)2k−2

. This converges to 1 when k → ∞.

I.157. (a) The expected values are N+1
2

; (b)
N(N+1

2
−n

N−1
; (c) Show that the co-

variance between the two numbers drawn is −N+1
12

. The correlation is − 1
N−1

;

(f) 0.

I.159. (a) 7
12

; (b) 161
216

; (c) 91
216

.

I.160. E(X1X2X3) = n(n − 1)(n − 2)p1p2p3.

I.162. For a general k, the conditional expectation is 4−k
3

.

I.164. (a) E(X|Y = y) = 3
4
(1 − y); (b) E(Y |X = x) = 3

4
(1 − x); (c)
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E(XY ) = 9
56

; (d) E(X2Y 2) = 1
35

.

I.165. (a) 1
2
; (b) 0; (c) −φ(c)Φ(c); (d) 1

4
− 1

2π
arcsin( 3√

10
).

I.166. The density of Z = X − Y is fZ(z) = 1 − |z|,−1 ≤ z ≤ 1.

I.167. A necessary and sufficient condition that you can make a triangle

with three segments of lengths a, b, c is that the sum of any two of a, b, c is

at least as large as the third one. Using this, you can show that the required

probability in this problem is 2 log 2 − 1.

I.168. 1
2
.

I.169. The joint density of U = X,V = XY,W = XY Z is fU,V,W (u, v, w) =
e−u− v

u−w
v

uv
, u, v, w > 0.

I.172. (a) Show that Cov(X1 + X2, X1 − X2) = 0, and that it follows from

this that X1 + X2, X1 − X2 are independent; (b) since X1 + X2, X1 − X2

are independent, any function of X1 + X2 and any function of X1 − X2 are

independent; (c) write X2
1 + X2

2 and X1

X2
in terms of the polar coordinates,

from which it will follow that they are independent.

I.173. (a) E(XY ) = 1
2
, Var(XY ) = 5

4
; (b) E(X2Y ) = 0; (c) 0; (d) c = −1.

I.174. 0.0367.

I.176. 1
2
.

I.177. 1
3
.

I.178. Yes, the expectation is finite and equals
√

2.

I.180. (a) A bound for the density of Z = X + Y is fZ(z) ≤ 1√
2π

for all z;

(b) no, the density of XY may not be bounded. Think of a random variable

Y with a density converging to ∞ very sharply at y = 0.

I.182. 4
9
.

I.183. θ(1−p)
p+θ(1−p)

.

I.184. The mean equals 10(1 − e−10) by applying the iterated expecta-

tion formula; the variance has to be found by applying the iterated variance

formula, and the terms in the formula have to be found numerically. The

variance is approximately 21.90.

I.185. 22.
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Appendix I: True-False Problems

1. T.

4. T.

6. F.

8. T.

9. F.

11. F.

13. F.

14. T.

15. F.

16. T.

18. F.

19. F.

22. T.

23. T.

25. T.

27. T.

28. F.

30. T.

32. F.

33. F.

35. T.

36. T.

39. T.

40. T.

42. T.

45. T.

46. T.

47. T.

49. T.

50. F.

51. T.

52. F.

53. T.
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55. F.

57. T.

59. F.

61. T.

63. T.

64. T.

65. T.

66. T.

68. T.

70. T.

71. F.

72. T.

73. T.

76. T.

77. T.

78. T.

79. F.

81. T.

82. T.

84. F.

86. F.

87. T.

88. F.

90. T.

91. F.

94. F.

95. T.

97. T.

99. F.

100. T.

101. T (the expected value is 2.49).

103. T.

104. T.

106. F.
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107. T.

109. T.

110. F.

112. T.

113. T.

114. F (ρ can also be −0.8).

116. T.

118. T.

119. F.

121. T
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