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Overview of definitions and results from probability

Countable sample space

Let Ω be countable.

AD Definition 1.2 P is a probability measure on Ω if
(a) P (A) ≥ 0 for all A ⊂ Ω,
(b) P (Ω) = 1,
(c) if A1, A2, . . . are pairwise disjoint then

P (∪∞i=1Ai) =

∞∑
i=1

P (Ai)

(“countable additivity” or “σ-additivity”).

AD Theorem 1.1 ( “monotone convergence”) Let A1 ⊂ A2 ⊂↑ A. Then

lim
n→∞

P (An) = P (A).

Proof. Use Definition 1.2 (in particular the σ-additivity). tu

Inclusion/exclusion formula: P (A ∪B) = P (A) + P (B)− P (A ∩B).

AD Theorem 1.3 (“Bonferroni bound”)

P (∩ni=1Ai) ≥ 1−
n∑
i=1

(1− P (Ai)).

Proof. Use Definition 1.2. tu

AD Definition 3.1 Let A ⊂ Ω and B ⊂ Ω with P (B) > 0. The conditional probability
of A given B is

P (A|B) :=
P (A ∩B)

P (B)
.

AD Theorem 3.1 (“multiplication rule”)

P (A ∩B) = P (A|B)P (B).

Proof. Use Definition 3.1. tu

Definition A1, A2, · · · form a partition of Ω if they are pairwise disjoint and
∪∞i=1Ai = Ω.

AD Theorem 3.1 (“law of total probability”) Let A1, A2, · · · be a partition of
Ω with P (Ai) > 0 for all i. Then for any B ⊂ Ω

P (B) =
∞∑
i=1

P (B|Ai)P (Ai).

3



Proof. Write P (B) =
∑∞

i=1 P (B ∩Ai). tu

AD Definition 3.2 A and B are independent if

P (A ∩B) = P (A)P (B).

AD Definition 3.3 A1, A2, · · · are independent if

P (∩j∈JAj) =
∏
j∈J

P (Aj) ∀ J ⊂ {1, 2, . . .}.

Bayes rule:

P (B|A) = P (A|B)
P (B)

P (A)
, P (A) > 0, P (B) > 0.

Corollary
P (B|A)

P (Bc|A)︸ ︷︷ ︸
posterior odds

=
P (A|B)

P (A|Bc)︸ ︷︷ ︸
likelihood ratio

P (B)

P (Bc)︸ ︷︷ ︸
prior odds

.

AD Theorem 3.3 (“Bayes’ Theorem”) Let A1, A2, · · · be a partition of Ω with
P (Ai) > 0 for all i, and let P (B) > 0. Then

P (Ai|B) =
P (B|Ai)P (Ai)∑
j P (B|Aj)P (Aj)

.

Proof. Follows from Bayes’ rule. tu

Decoding example (LN Example 2.17) (using random variables notation)
Let Y ∈ {1, . . . , I} be the signal sent.
Let X ∈ {1, . . . , J} be the signal received.
We are given P (Y = i), ∀ i and P (X = j|Y = i), ∀ i, j. Let φ(X) ∈ {1, . . . , I}
be the decoder. Then

P (signal correctly decoded) = P (Y = φ(X))

=
∑
j

P (Y = φ(j), X = j)

=
∑
j

P (Y = φ(j)|X = j)P (X = j).

The optimal decoder φopt maximizes P (signal correctly decoded). It follows
that

φopt(j) = arg max
i
P (Y = i|X = j), j = 1, . . . J :
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P (Y = φ(X)) =
∑
j

P (Y = φ(j)|X = j)P (X = j)

≤
∑
j

max
i
P (Y = i|X = j)P (X = j).

By Bayes rule for all j

φopt(j) = arg max
i
P (Y = i|X = j) = arg max

i
P (X = j|Y = i)P (Y = i).
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Discrete random variables and expectation

AD Definition 4.1 Let Ω be countable. A random variable X is a mapping

X : Ω→ R.

Then {X(ω) : ω ∈ Ω} is also countable. We say that X is a discrete random
variable.

AD Definition 4.2 Let X : Ω → {x1, x2, . . .} be a discrete random variable.
The probability mass function (pmf) of X is

p(x) := P (X = x) = P (ω : X(ω) = x), x ∈ R.

We often write p =: pX .

AD Definition 4.3 The cumulative distribution function (CDF) of X ∈ R is

F (x) := P (X ≤ x), x ∈ R.

We often write F =: FX .

AD Theorem 4.1 The function F is a CDF iff
(a) 0 ≤ F (x) ≤ 1 for all x ∈ R,
(b) limx→−∞ F (x) = 0, limx→∞ F (x) = 1,
(c) limx↓a F (x) = F (a),
(d) F is increasing.

Proof of F CDF ⇒ (c). This follows from monotone convergence (Theorem
1.1). tu

Remark If X ∈ {x1, x2, · · · } is a discrete random variable, its CDF is a step-
function (a piecewise constant function which jumps at xi with jump size p(xi),
i = 1, 2, . . .).

AD Definition 4.6 Let X and Y be two discrete random variables (defined on
Ω). Then X and Y are called independent if

P (X = x, Y = y) = P (X = x)P (Y = y), ∀ (x, y) ∈ R2.

AD Theorem 4.2 Let g and h be two real-valued functions on R. Then:
X and Y independent ⇒ g(X) and h(Y ) independent.

Definition
The random variables X1, . . . , Xn are called independent identically distributed
(i.i.d.) if
- P (X1 = x1, . . . , Xn = xn) = P (X1 = x1) · · ·P (Xn = xn) ∀ (x1, . . . , xn) ∈ Rn
(i.e., X1, . . . , Xn are independent)
- P (Xi = ·) =: F (·) is the same for all i (i.e., X1, . . . , Xn are identically
distributed).
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AD Definition 4.17 The expectation of a discrete random variable X is

EX :=
∑
x

xp(x) := µ.

Linearity of expectation:
For constants a and b, we have E(aX + bY ) = aEX + bEY .

AD Proposition (Change of variable) Let g : R→ R be some function. Then
Eg(X) =

∑
x g(x)p(x).

Proof. Write Y = g(X). Then the pmf of Y is pY (y) =
∑

x: g(x)=y p(x). Hence

EY =
∑
y

ypY (y) =
∑
y

∑
x: g(x)=y

yp(x) =
∑
y

∑
x: g(x)=y

g(x)p(x) =
∑
x

g(x)p(x).

tu

AD Theorem 4.3 X and Y independent ⇒ EXY = EXEY .

Proof.

EXY =
∑
x

∑
y

xyP (X = x, Y = y) =
∑
x

∑
y

xyP (X = x)P (Y = y)

=
∑
x

xP (X = x)
∑
y

yP (Y = y) = EXEY.

tu

Definition Let A ⊂ Ω. The indicator function of A is

lA(ω) =

{
1 ω ∈ A
0 ω /∈ A

, ω ∈ Ω.

Proposition For X := lA we have EX = P (A).

Proof. EX = 1× P (X = 1) + 0× P (X = 0) = P (X = 1) = P (A). tu

AD Theorem 4.4 (“partial integration”) Suppose X ∈ {0, 1, 2, . . .}. Then

EX =
∞∑
n=0

P (X > n).

Proof.

∞∑
n=0

P (X > n) =

∞∑
n=0

∞∑
k=n+1

P (X = k) =

∞∑
k=1

k−1∑
n=0

P (X = k)

=
∞∑
k=1

kP (X = k) = EX.

tu
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Variance and weak law of large numbers (LLN, discrete case)

AD Definition 4.9 Let EX := µ. The variance of X is

Var(X) := E(X − µ)2.

Note: E(X − µ)2 = EX2 − µ2.

Proposition
(a) Var(cX) = c2Var(X),
(b) Var(X + c) = Var(X),
(c) Var(X) = 0 ⇔ P (X = µ) = 1 (where µ := EX).

Proof. Use Definition 4.9. tu

Theorem (“Jensen’s inequality”, see also Section 7.8 in AD) Let g : R → R
be convex. Then Eg(X) ≥ g(EX).

Proof for the case X discrete. Let X ∈ {x1, x2, . . .} and write pi := p(xi),
i = 1, 2, . . .. Then EX =

∑∞
i=1 xipi is a convex combination of x1, x2, . . ., so by

convexity of g

g(

∞∑
i=1

xipi) ≤
∞∑
i=1

g(xi)pi.

tu

Corollary EX2 ≥ (E|X|)2.

AD Definition 4.10 The k-the moment of X is EXk (k ∈ N).

Note Jensen’s inequality ⇒ E|X|k ≥ (E|X|)k, k ≥ 1.

AD Theorem 4.5 Let X and Y be independent. Then

Var(X + Y ) = Var(X) + Var(Y ).

Proof. Assume without loss of generality that EX = EY = 0. Then

Var(X + Y ) = E(X + Y )2 = EX2 + EY 2 + 2EXY.

We have by Theorem 4.3 that EXY = EXEY = 0. Moreover, EX2 = Var(X)
and EY 2 = Var(Y ). tu

Extension Let X1, . . . , Xn be independent. Then

Var(

n∑
i=1

Xi) =

n∑
i=1

Var(Xi).

Corollary Let X1, . . . , Xn be i.i.d. with EX1 =: µ and Var(X1) =: σ2. Write
their average as

X̄ :=
1

n

n∑
i=1

Xi.
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Then

EX̄ = µ, Var(X̄) =
σ2

n
.

AD Theorem 4.6 (“Chebyshev’s inequality”) Let g : R → [0,∞) be an
increasing function. Then for any constant c such that g(c) > 0 we have

P (X ≥ c) ≤ Eg(X)

g(c)
.

Proof.

Eg(X) =
∑
x

g(x)p(x) ≥
∑
x≥c

g(x)p(x) ≥ g(c)
∑
x≥c

p(x) = g(c)P (X ≥ c).

tu

Corollary For all c > 0

P (|X − EX| ≥ c) ≤ Var(X)

c2
.

AD Theorem 4.7 (“(Weak) Law of Large Numbers (LLN)”)

Let X1, . . . , Xn, · · · be i.i.d. with EX1 =: µ and Var(X1) =: σ2. Write the
average of the first n as

X̄n :=
1

n

n∑
i=1

Xi.

Then for all ε > 0
lim
n→∞

P (|X̄n − µ| > ε) = 0.

Proof.

P (|X̄n − µ| > ε) ≤ σ2

nε2
.

tu
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Probability and moment generating functions (discrete case)

AD Definition 5.1 Let X ∈ {0, 1, 2, . . .}. The probability generating function
(pgf) of X is

G : s 7→ EsX

(provided the expectation exists). We often write G =: GX .

AD Theorem 5.1 Assume G(s) <∞ for all s in some open neighbourhood of
zero. Then for all k ∈ {0, 1, . . .}
a) P (X = k) = G(k)(0)

k! ,

b) if lims↑1G
(k)(s) <∞ then G(k)(1) = EX(X − 1) · · · (X − k + 1).

AD Theorem 5.2
X1, . . . , Xn independent ⇒ G∑n

i=1Xi
=
∏n
i=1GXi.

Proof.

Es
∑n
i=1Xi = E

n∏
i=1

sXi =

n∏
i=1

EsXi ,

where we invoked Theorems 4.2 and 4.3. tu

AD Theorem 5.3 If GX(s) = GY (s) for all s in an open neighbourhood of
zero, then X and Y have the same distribution.

AD Definition 5.3 Let X ∈ R. The moment generating function (mgf) of X
is

Ψ : t 7→ EetX

(provided the expectation exists). We often write Ψ =: ΨX .

AD Theorem 5.4 Suppose Ψ(t) exists for all t in an open neighbourhood U
of zero. Then
a) Ψ(k)(0) = EXk, k ∈ {0, 1, 2, . . .},
b) ΨX(t) = ΨY (t) for all t ∈ U ⇒ X and Y have the same distribution,
c) X1, . . . , Xn independent ⇒ Ψ∑n

i=1 Xi
=
∏n
i=1 ΨXi.
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Hypergeometric distribution

AD Theorem 6.6 Let X have the hypergeometric distribution:

P (X = x) =

(
R
x

)(
N−R
n−x

)(
N
n

) .

Then for R = RN and RN/N → p, 0 < p < 1,

lim
N→∞

P (X = x) =

(
n

x

)
px(1− p)n−x.

In other words, the hypergeometric distribution can then be approximated by the
binomial distribution.

Proof. Use Stirling’s formula. tu
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Distribution of sums of discrete random variables: some special cases

AD Theorem 6.12 Let X and Y be independent.
a) X ∼ Bin(n, p), Y ∼ Bin(m, p) ⇒ X + Y ∼ Bin(n+m, p),
b) (Negative Binomial) X ∼ Neg. Bin(r, p), Y ∼ Neg. Bin(s, p) ⇒ X + Y ∼
Neg. Bin(r + s, p),
c) X ∼ Poisson(λ), Y ∼ Poisson(µ) ⇒ X + Y ∼ Poisson(λ+ µ).

Proof. Either directly:

P (X + Y = z) =
∑
y

P (X = z − y)P (Y = y),

or use moment generating functions. tu
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General sample space

Let Ω be some sample space and A a collection of subsets of Ω.

LN Definition 3.1
1) The collection A is a σ-algebra if
- Ω ∈ A,
- A ∈ A ⇒ Ac ∈ A,
- A1, A2, . . . ∈ A ⇒ ∪∞i=1Ai ∈ A (“σ-additivity”).
Then (Ω,A) is called a measurable space.
2) The map P : A → [0, 1] is a probability measure (probability distribution) if
- P (Ω) = 1,
- A1, A2, . . . ∈ A mutually disjoint ⇒ P (∪∞i=1Ai) =

∑∞
i=1 P (Ai)

(“countable subadditivity”) (compare AD Definition 1.2).
3) The triple (Ω,A, P ) is called a probability space.

Definition Let A0 be a collection of subsets of Ω. The σ-algebra generated by
A0 is

A := σ(A0) := ∩{B : B ⊇ A0, B σ−algebra}.

Definition Let Ω := R and B be the σ-algebra generated by the collection
A0 := {(a, b] : a < b} of all intervals. Then B is called the Borel σ-algebra.

Definition Let B be the Borel σ-algebra and P ([a, b]) := b−a for 0 ≤ a ≤ b ≤ 1.
Then P is called the Lebesgue measure on [0, 1].

LN Theorem 3.1 (“monotone convergence”) Let B1 ⊂ B2 ⊂ · · · ↑ B =
∪∞n=1Bn. Then limn→∞ P (Bn) = P (B) (see also AD Theorem 1.1).

Corollary Let A1 ⊃ A2 ⊃ · · · ↓ A = ∩∞n=1An. limn→∞ P (An) = P (A).

Note Consider (R,A, P ) with A the Borel σ-algebra on R. Define

F (x) := P ((−∞, x]), x ∈ R.

By the monotone convergence theorem, for all x,

lim
n→∞

F (x+ 1/n) = F (x)

and
lim
n→∞

F (x− 1/n) = P ((−∞, x)) =: F (x−).

We say that the CDF F is càdlàg (continue à droite, limite à gauche). (Compare
AD Theorem 4.1.)
We have:
F is a CDF ⇔ F is càdlàg and ↑, limx→−∞ F (x) = 0, limx→∞ F (x) = 1.
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Notation

A∞ := ∩n ∪k≥n Ak
= lim sup

n→∞
An

= ∞ many of the Ak happen

= {Ak i.o.}, i.o. := infinitely often.

∪n ∩k≥n Bk
= lim inf

n→∞
Bn

= {Bk eventually}.

Definition A1, A2, . . . are called independent if

P (∩j∈JAj) =
∏
j∈J

P (Aj) ∀ J ⊂ N finite.

(Compare AD Definition 3.3.)

Borel-Cantelli Lemma Let A1, A2, . . . ∈ A.
1)
∑∞

k=1 P (Ak) <∞ ⇒ P (A∞) = 0.
2)
∑∞

k=1 P (Ak) =∞ & A1, A2, . . . independent ⇒ P (A∞) = 1.

Proof. Let Bn := ∪k≥nAk. Apply the monotone convergence theorem.
1)

P (A∞) = lim
n→∞

P (Bn) ≤ lim
n→∞

∑
k≥n

P (Ak) = 0.

2)

P (Ac∞) = lim
n→∞

P (Bc
n) = lim

n→∞

∏
k≥n

(1− P (Ak)) = lim
n→∞

∏
k≥n

exp

[
log(1− P (Ak))

]

≤ lim
n→∞

∏
k≥n

exp

[
−P (Ak)

]
= lim

n→∞
exp

[
−
∑
k≥n

P (Ak)

]
= 0.

tu

Definition (LN Section 3.1.4) Let B := σ({(−∞, b] : b ∈ Rd}) 2 be the Borel
σ-algebra on Rd, (Ω,A) be a measurable space and X : Ω → Rd. Then X is
called measurable if {ω : X(ω) ∈ B} ∈ A for all B ∈ B. The map X is then
called a (d-dimensional) random variable.

2(−∞, b] is the set of all x ∈ Rd with xj ≤ bj for all j ∈ {1, . . . , d}.
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Continuous random variables in R

AD Definition 7.2 The cumulative distribution function (CDF) of a random
variable X ∈ R is

F (x) := P (X ≤ x), x ∈ R.
(Compare AD Definition 4.3.)

AD Definition 7.3 X ∈ R and Y ∈ R are independent if

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) ∀(x, y) ∈ R2.

AD Definition 7.2 continued The random variable X is called continuous if
its CDF F is continuous.

AD Definition 7.1 The random variable X admits a (probability) density function (pdf)
f(·) if its CDF F (·) can be written as

F (x) =

∫ x

−∞
f(t)dt ∀ x.

Then X (or F ) is called absolutely continuous.

Note At locations x where f(·) is continuous

f(x) =
d

dx
F (x).

Note The function f is a density iff
- f ≥ 0,
-
∫∞
−∞ f(x)dx = 1.

AD Definition 7.5 The p-th quantile of a CDF F is

F−1(p) := inf{x : F (x) ≥ p}.

Then F−1(1/2) is a median.

AD Theorem 7.1
a) Let µ ∈ R and σ > 0. If f(·) is a density then so is

f(x|µ, σ) :=
1

σ
f

(
x− µ
σ

)
, x ∈ R.

Then {f(·|µ, σ) : µ ∈ R, σ > 0} is a location/scale family.

b) Let f1, . . . , fk be densities and let pi ≥ 0, i = 1, . . . , k, and
∑k

i=1 pi = 1.

Then
∑k

i=1 pifi is a density, a so-called mixture density.

AD Definition 7.6 The density f is symmetric around M if f(M + x) =
f(M − x) ∀ x. Important special case: M = 0. Then f(x) = f(−x) and
F (x) = 1− F (−x) ∀ x.

AD Definition 7.7 The density f is unimodal with maximum at M if f(x) ↑
for x < M and f(x) ↓ for x > M .
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Functions of an (absolutely) continuous random variable in R

AD Theorem 7.2 (“Jacobian”) Let X ∈ R and g be a real-valued strictly
monotone and differentiable function, defined on some open interval S such
that P (X ∈ S) = 1. Then Y := g(X) has density

fY (y) =
fX(g−1(y))

|g′(g−1(y))|
, g−1(y) ∈ S.

(Here 1/g′(g−1(y)) = dg−1(y)/dy is called the “Jacobian” .)

Proof. Say g ↑. Then

FY (y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX(g−1(y)).

Differentiate to find the density of Y . tu

Remark Also for g possibly not monotone, it is often feasible to first find the
distribution function FY of Y := g(X) and then differentiate to obtain the
density fY .

Definition Let U ∼ Uniform[0, 1] and let F be a CDF. Then F−1(U) is called
the quantile transformation of U .

AD Theorem 7.4 Let U ∼ Uniform[0, 1]. Then X := F−1(U) has CDF F .

Proof. From AD Definition 7.5: F−1(u) = inf{x : F (x) ≥ u}. Now check that

P (X ≤ x) = P (U ≤ F (x)) = F (x).

tu
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Expectation of (absolutely) continuous random variables

Note If integral limits are not specified it means the integral is over R.

AD Definition 7.9 If X has pdf f and
∫
|x|f(x)dx <∞ then the expectation

of X is

EX :=

∫
xf(x)dx.

Remark For arbitrary random variables: if X has CDF F and
∫
|x|dF (x) <∞

then EX =
∫
xF (x).

Linearity of expectation:
For constants a and b, we have E(aX + bY ) = aEX + bEY .

AD Theorem 7.5 (“change of variable”) Let g : R → R (measurable). If∫
|g(x)|f(x)dx <∞ then Eg(X) =

∫
g(x)f(x)dx.

Sketch of proof. Suppose g is strictly increasing and let Y = g(X). Then
invoking AD Theorem 7.2

EY =

∫
yfY (y)dy =

∫
y
fX(g−1(y))

g′(g−1(y))
dy

=

∫
yfX(g−1(y))dg−1(y) =

∫
g(x)fX(x)dx.

tu

AD Definition 7.10 The k-th moment of X is EXk (k ∈ N). (This is as
AD Definition 4.10, but now for the continuous case.) The variance of X is
Var(X) = E(X − EX)2 (as in AD Definition 4.9 but now for the continuous
case).

Note: E(X − µ)2 = EX2 − µ2 (as in the discrete case).

Proposition (as in the discrete case)
(a) Var(cX) = c2Var(X),
(b) Var(X + c) = Var(X),
(c) Var(X) = 0 ⇔ P (X = µ) = 1 (where µ := EX).

AD Theorem 7.7 (“partial integration”) (a continuous version of AD Theorem
4.4) Suppose X ≥ 0 and EX exists. Then

EX =

∫ ∞
0

(1− F (x))dx.

Sketch of proof. Suppose X has density f = F ′. Then by partial integration

EX =

∫ ∞
0

xf(x)dx =

∫ ∞
0

xdF (x) = −
∫ ∞

0
xd(1− F (x))

17



= −x(1− F (x))|∞x=0 +

∫ ∞
0

(1− F (x))dx.

But x(1− F (x))|x=0 = 0 and

0 ≤ x(1− F (x)) ≤
∫ ∞
x

uf(u)du→ 0, x→∞,

since EX <∞. tu
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Moment generating functions (discrete or continuous case)

AD Definition 7.14 Let X ∈ R. The moment generating function (mgf) of
X is

Ψ : t 7→ EetX

(provided the expectation exists). We often write Ψ =: ΨX .

Theorem (as for the discrete case in AD Theorem 5.4) Suppose Ψ(t) exists for
all t in an open neighbourhood U of zero. Then
a) Ψ(k)(0) = EXk, k ∈ {0, 1, 2, . . .},
b) ΨX(t) = ΨY (t) for all t ∈ U ⇒ X and Y have the same distribution,
c) X1, . . . , Xn independent ⇒ Ψ∑n

i=1 Xi
=
∏n
i=1 ΨXi.

Note Let Y := µ+ σX. Then ΨY (t) = eµtΨX(σt).

Example
Let X ∼ N (0, 1). Then ΨX(t) = exp[t2/2].
Let Y ∼ N (µ, σ2). Then ΨY (t) = exp[µt+ σ2t2/2].
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Jensen’s inequality, Chebyshev’s inequality, weak LLN, revisited

Theorem (“Jensen’s inequality”) Let g : R → R be convex. Then Eg(X) ≥
g(EX).

Proof For all constants a and all x it holds that g(x) ≥ g(a) + m(a)(x − a)
where m(a) is the slope of the line l(x) := g(a) +m(a)(x− a) passing through
(a, g(a)) that is below g. So we have

Eg(X) ≥ g(a) +m(a)(EX − a).

Now take a = EX. tu

Corollary EX2 ≥ (E|X|)2.

Note Jensen’s inequality ⇒ E|X|k ≥ (E|X|)k, k ≥ 1.

Theorem Let X and Y be independent. Then
Then
a) EXY = EXEY
b) Var(X + Y ) = Var(X) + Var(Y ).

Proof. The proof of a) is given in the lemma following AD Definition 12.3.
The proof of b) then follows as in the discrete case (AD Theorem 4.5). tu

Extension Let X1, . . . , Xn be independent. Then

Var(

n∑
i=1

Xi) =

n∑
i=1

Var(Xi).

Corollary Let X1, . . . , Xn be i.i.d. with EX1 =: µ and Var(X1) =: σ2. Write
their average as

X̄ :=
1

n

n∑
i=1

Xi.

Then

EX̄ = µ, Var(X̄) =
σ2

n
.

Theorem (“Chebyshev’s inequality”) (as AD Theorem 4.6 for the continuous
case) Let g : R → [0,∞) be an increasing function. Then for any constant c
such that g(c) > 0 we have

P (X ≥ c) ≤ Eg(X)

g(c)
.

Proof for the absolutely continuous case. It boils down to replacing in
the proof of Theorem 4.6 the sums by integrals and the pmf p by the pdf f :

Eg(X) =

∫
x
g(x)f(x) ≥

∫
x≥c

g(x)f(x) ≥ g(c)

∫
x≥c

f(x) = g(c)P (X ≥ c).
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tu

Corollary For all c > 0

P (|X − EX| ≥ c) ≤ Var(X)

c2
.

Theorem (“(Weak) Law of Large Numbers (LLN)”) (as AD Theorem 4.7 for
the discrete case, now stated for the general case)
Let X1, . . . , Xn, · · · be i.i.d. with EX1 =: µ and Var(X1) =: σ2. Write the
average of the first n as

X̄n :=
1

n

n∑
i=1

Xi.

Then for all ε > 0
lim
n→∞

P (|X̄n − µ| > ε) = 0.
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Distribution of sums of continuous random variables: some special cases

Theorem Let X1, . . . , Xn be i.d.d. copies of a random variable X.
a) X ∼ Exponential(λ), ⇒

∑n
i=1Xi ∼ Gamma(n, λ),

b) X ∼ N (µ, σ2), ⇒
∑n

i=1Xi ∼ N (nµ, nσ2),
c) X ∼ N (µ, σ2) ⇒

∑n
i=1X

2
i ∼ χ2 with n degrees of freedom.
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Limit theorems

Definition (Section 4.2 of LN) A sequence of real-valued random variables Zn
converges in probability to Z (notation: Zn →P Z) if for all ε > 0

lim
n→∞

P (|Zn − Z| > ε) = 0.

It converges almost surely to Z (notation: Zn →a.s. Z) if

P ( lim
n→∞

Zn = Z) = 1.

LN Lemma 4.1
i) Zn →a.s. Z ⇒ Zn →P Z.
ii)
∑

n P (|Zn − Z| > ε) <∞ ∀ ε > 0 ⇒ Zn →a.s. Z.

Proof. Let An := {|Zn − Z| > ε}.
i) ω ∈ A∞ implies Zn(ω) does not converge to Z(ω). Therefore P (A∞) = 0.
But, invoking monotone convergence,

P (A∞) = lim
n→∞

P (∪k≥nAk) ≥ lim
n→∞

P (An).

ii) By the Borel-Cantelli Lemma P (A∞) = 0. But then

1 = P (Ac∞) = P ( lim
k→∞

|Zk − Z| ≤ ε).

tu

LN Lemma 4.2 (“Strong Law of Large Numbers (LLN)”) Let X1, . . . , Xn, . . .

be i.i.d. with EX1 =: µ and Var(X1) =: σ2 < ∞. Denote the average of the
first n by X̄n :=

∑n
i=1Xi/n. Then

X̄n →a.s. µ.

Proof. By Chebyshev’s inequality, for all ε > 0

P (|X̄n − µ| > ε) ≤ σ2

nε2
.

Hence

P (|X̄n2 − µ| > ε) ≤ σ2

n2ε2
.

By the Borel-Cantelli Lemma this gives

X̄n2 →a.s. µ.

Define the sum Sn :=
∑n

i=1Xi.
◦ Suppose first Xi ≥ 0 (almost surely ∀ i). Then for n2 ≤ k ≤ (n+ 1)2

Sk
k
≥ Sn2

k
≥ Sn2

n2

n2

(n+ 1)2
→a.s. µ
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and
Sk
k
≤
S(n+1)2

k
≤

S(n+1)2

(n+ 1)2

(n+ 1)2

n2
→a.s. µ.

◦ For general Xi write Xi = X+
i −X

−
i , where X+

i := max{Xi, 0} and X−i :=
max{−Xi, 0}. tu

AD Theorem 10.3 (“de Moivre-Laplace Local Limit Theorem”) Let X ∼
Binomial(n, p) where 0 < p < 1 is fixed. Then for any fixed constant C and any
k ∈ {0, . . . , n} such that |p− k/n| ≤ C it holds that

P (X = k) ∼ 1

σ
φ

(
k − µ
σ

)
(n→∞),

where µ := np(= EX), and σ2 := np(1 − p)(= Var(X)). Moreover, φ is the
N (0, 1)-density.

Sketch of Proof. Use Stirling’s formula and the two-term Taylor expansion
log(1 + x) ∼ x− x2/2 x→ 0. tu

AD Theorem 10.2 (“de Moivre-Laplace Central Limit Theorem (CLT)”) Let
X ∼ Binomial(n, p) where 0 < p < 1 is fixed. Then for all x ∈ {1, . . . , n}

P (X ≤ x) ∼ Φ

(
x− µ
σ

)
(n→∞),

where µ := np(= EX), and σ2 := np(1 − p)(= Var(X)). Moreover, Φ is the
N (0, 1)-distribution function.

Sketch of Proof. See AD Theorem 10.1. tu

Remark The continuity correction is that instead of taking for x ∈ {0, 1, . . . , n}

P (X ≤ x) ∼ Φ

(
x− µ
σ

)
one uses

P (X ≤ x) = P (X ≤ X + .5) ∼ Φ

(
x+ .5− µ

σ

)
.

AD Theorem 10.1(“Central Limit Theorem (CLT)”) Let X1, . . . , Xn, . . . be

i.i.d. with EX1 =: µ and Var(X1) =: σ2 <∞. Then with X̄n :=
∑n

i=1Xi/n

lim
n→∞

P

(√
n(X̄n − µ)

σ
≤ t
)

= Φ(t), ∀ t,

where Φ is the N (0, 1)-distribution function.

Sketch of Proof. We consider the case where ΨX1(t) exists for all t in an
open neighbourhood of zero. We will only show convergence of the moment
generating function. The result then follows from a “continuity theorem for
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mgf’s” (not shown). Without loss of generality we may assume µ = 0 and
σ2 = 1. Then

ΨX1(t) ∼ ΨX1(0)︸ ︷︷ ︸
=1

+ Ψ̇X1(0)︸ ︷︷ ︸
=µ=0

t√
n

+ Ψ̈X1(0)︸ ︷︷ ︸
=EX2

1 =σ2=1

t2

2n

= 1 +
t2

2n
.

Moreover
Ψ√nX̄n(t) = Ψn

X1
(t/
√
n)

so that

log Ψ√nX̄n(t) = n log Ψn
X1

(t/
√
n) ∼ n log(1 + t2/(2n)) ∼ t2/2.

It follows that Ψ√nX̄n(t)→ exp[t2/2] which is the mgf of a N (0, 1)-variable. tu
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Multivariate discrete distributions

Let X : Ω → {x1, x2, . . .} and Y : Ω → {y1, y2, . . .} be two discrete random
variables.

AD Definition 11.1/11.2 The joint probability mass function (pmf) of (X,Y )
is

p(x, y) := P (X = x, Y = y), (x, y) ∈ R2.

The joint cumulative distribution function (CDF) is

F (x, y) := P (X ≤ x, Y ≤ y), (x, y) ∈ R2.

AD Definition 11.3 The marginal pmf of X is

pX(x) =
∑
y

p(x, y), x ∈ R.

The marginal pmf of Y is

pY (y) =
∑
x

p(x, y), y ∈ R.

For a function g : R2 → R and for Z := g(X,Y ) the pmf of Z is

pZ(z) =
∑

(x,y): g(x,y)=z

p(x, y), z ∈ R.

AD Theorem 11.1 (“change of variable”) For a function g : R2 → R,

Eg(X,Y ) =
∑
x,y

g(x, y)p(x, y).

Proof. Let Z = g(X,Y ). Then

EZ =
∑
z

zpZ(z) =
∑
z

z
∑

(x,y): g(x,y)=z

p(x, y)

=
∑
z

∑
(x,y): g(x,y)=z

zp(x, y) =
∑
x,y

g(x, y)p(x, y).

tu

AD Definition 11.4 For pY (y) > 0 the conditional distribution of X given
Y = y is

p(x|y) := P (X = x|Y = y) =
p(x, y)

pY (y)
.

The conditional expectation of X given Y = y is

E(X|Y = y) =
∑
x

xp(x|y) =: h(y),
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and we write E(X|Y ) := h(Y ).

AD Proposition 11.1 We have

E

(
Xg(Y )

∣∣∣∣Y ) = g(Y )E(X|Y ).

Proof.

E

(
Xg(Y )

∣∣∣∣Y = y

)
=
∑
x

xg(y)p(x|y) = g(y)
∑
x

xp(x|y).

tu

AD Theorem 11.3 (“iterated expectations”)

E

(
E(X|Y )

)
= EX.

Proof. Let h(y) := E(X|Y = y). Then

Eh(Y ) =
∑
y

h(y)pY (y) =
∑
y

[∑
x

xp(x|y)

]
pY (y)

=
∑
x

x
∑
y

p(x, y) =
∑
x

xpX(x).

tu

Definition

Var(X|Y = y) := E(X2|Y = y)−
(
E(X|Y = y)

)2

=: h̃(y)

and
Var(X|Y ) := h̃(Y ).

AD Theorem 11.4 (“iterated variance”)

Var(X) = EVar(X|Y )︸ ︷︷ ︸
“within”

+ Var(E(X|Y ))︸ ︷︷ ︸
“between”

.

Proof. We have

Var(X|Y ) = E(X2|Y )− (E(X|Y ))2,

so by iterated expectations

EVar(X|Y ) = EX2 − E(E(X|Y ))2.
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Moreover, using iterated expectations once more

Var(E(X|Y )) = E(E(X|Y ))2 −
(
E(E(X|Y ))

)2

= E(E(X|Y ))2 − (EX)2.

tu

AD Example 11.18
a) Best constant predictor:

arg min
c∈R

E(Y − c)2 = EY.

b) Best predictor given X = x:

arg min
c∈R

E

(
(Y − c)2

∣∣∣∣X = x

)
= E(Y |X = x).

Hence
min

d: R→R
E(Y − d(X))2 = E(Y − E(Y |X))2 = EVar(Y |X).

c) Best linear predictor

arg min
(a,b)T∈R2

E(Y − (a+ bX))2 :=

(
α
β

)
,

where

α = EY − βEX, β =
EXY − EXEY

Var(X)
.

AD Definition 11.7 The covariance between X and Y is

Cov(X,Y ) = EXY − EXEY.

AD Example 11.18 c) continued.

β =
Cov(X,Y )

σ2
X

E(Y − (α+ βX))2 = σ2
Y −

Cov2(X,Y )

σ2
X

.

AD Theorem 11.6
a) Cov(X,Y ) = E(X − EX)(Y − EY ).
b) Cov(X,X) = Var(X).
c) Cov(aX + bY, cX + dY ) = acVar(X) + (ad+ bc)Cov(X,Y ) + bdVar(Y ),
and

Var(
n∑
i=1

Xi) =
n∑
i=1

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj).

d) X and Y independent ⇒ Cov(X,Y ) = 0.
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Proof of c). Assume without loss of generality that EX = EY = 0 and
EXi = 0 for all i. Then

Cov(aX + bY, cX + dY ) = E(aX + bY )(cX + dY )

and

Var(
n∑
i=1

Xi) = E(
n∑
i=1

Xi)
2.

Now remove the brackets and use linearity of expectation. tu

Proof of d). See Theorem AD 4.4. tu

AD Definition 11.8 The correlation between X and Y is

ρXY :=
Cov(X,Y )√

Var(X)Var(Y )
.

AD Theorem 11.6 It holds that |ρXY | ≤ 1 and |ρXY | = 1 ⇔ Y = α + βX
(∃ (α, β)).

Proof. Use AD Example 11.8 c) continued. tu
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Multivariate continuous distributions

AD Definition 12.1 (X,Y ) ∈ R2 has density f(x, y), (x, y) ∈ R2, if for all
−∞ < a ≤ b <∞ and −∞ < c ≤ d <∞ it holds that

P (a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

∫ b

a
f(x, y)dxdy.

AD Definition 12.2 If (X,Y ) admits density f , the cumulative distribution
function (CDF) of (X,Y ) is

F (x, y) :=

∫ y

−∞

∫ x

∞
f(s, t)dsdt, (x, y) ∈ R2

and we have (for almost all (x, y))

f(x, y) =
∂2

∂x∂y
F (x, y).

The (marginal) density of X is then

fX(x) =

∫
f(x, y)dy, x ∈ R,

and the (marginal) density of Y is

fY (y) =

∫
f(x, y)dx, y ∈ R.

AD Proposition X and Y independent iff F (x, y) = FX(x)FY (y) for all (x, y)
iff f(x, y) = fX(x)fY (y) for (almost) all (x, y).

AD Definition 12.3

Eg(X,Y ) =

∫
g(x, y)f(x, y)dxdy.

Lemma X and Y independent ⇒ EXY = EXEY .

Proof. This follows by replacing in the proof for the discrete case (AD Theorem
4.3) the sums by integrals and the pmf’s by pdf’s:

EXY =

∫
y

∫
x
xyf(x, y)dxdy =

∫
y

∫
x
xyfX(x)fY (y)dxdy

=

∫
x
xfX(x)dx

∫
y
yfY (y)dy = EXEY.

tu

30



Definition of the bivariate normal distribution Let U1 and U2 be inde-
pendent and both N (0, 1)-distributed. Write

U :=

(
U1

U2

)
, X = AU + µ,

where µ ∈ R2 is a given vector and A ∈ R2×2 is a given non-singular ma-
trix. Then X has a two-dimensional normal distribution with parameters (µ,Σ)
where Σ = AAT .

Note The Jacobian (see AD Theorem 13.3) of u 7→ x = Au+ µ is A−1 and we
have |det(A−1)| = 1/

√
det(Σ), Σ = AAT . In the above definition

fU (u) =
1

2π
exp[−‖u‖2/2], u =

(
u1

u2

)
where ‖u‖2 = u2

1 + u2
2 = uTu. It follows (see AD Theorem 13.3) that

fX(x) =
1

2π
√

detΣ
exp[−(x− µ)TΣ−1(x− µ)], x =

(
x1

x2

)
.

Moreover, we have EX = µ and for

Σ =

(
σ2

1 σ1,2

σ1,2 σ2
2

)
,

it holds that Var(X1) = σ2
1, Var(X2) = σ2

2 and Cov(X1, X2) = σ1,2.

Remark The definition of the d-dimensional normal distribution is: X = AU+
µ with U = (U1, . . . , Ud)

T , U1, . . . , Ud i.i.d. N (0, 1), µ ∈ Rd and A ∈ Rd×d.

Theorem X ∼ N (µ,Σ) ⇒ BX ∼ N (Bµ,BΣBT ).

Proof. Follows from the definition of the bivariate (or multivariate) normal. tu

Theorem Let X = (X1, X2)T ∼ N (µ,Σ). Then:
X1 and X2 independent ⇔ Cov(X1, X2) = 0.

Proof of (⇐). Since

Σ =

(
σ2

1 0
0 σ2

2

)
we see that

fX(x) = fX1(x1)fX2(x2) ∀ x ∈ R2.

tu

AD Example 12.16 Let X1 and X2 be independent and X1 ∼ N (µ1, σ
2),

X2 ∼ N (µ2, σ
2). Define Z1 := X1+X2 and Z2 := X1−X2. Then Z := (Z1, Z2)T

is bivariate normal and Cov(Z1, Z2) = 0 so that Z1 and Z2 are independent.

AD Theorem 12.4 Let X1, . . . , Xn be i.i.d. N (µ, σ2). Define the sample mean
X̄ :=

∑n
i=1Xi/n and the sample variance S2 :=

∑n
i=1(Xi− X̄)2/(n− 1). Then

X̄ and S2 are independent.
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Proof for n = 2. It follows from AD Theorem 12.4:

X̄ =
X1 +X2

2
, S2 =

(X1 −X2)2

2
.

tu

AD Definition 12.6 Let(X,Y ) have pdf f(x, y), (x, y) ∈ R2. For fY (y) > 0
the conditional density of X given Y = y is

f(x|y) :=
f(x, y)

fY (y)
, x ∈ R.

The conditional expectation of X given Y = y is

E(X|Y = y) :=

∫
xf(x|y)dx =: h(y)

and
E(X|Y ) := h(Y ).

The conditional variance of X given Y = y is

Var(X|Y = y) = E(X2|Y = y)−
(
E(X|Y = y)

)2

=: h̃(y)

and
Var(X|Y ) := h̃(Y ).

Many results for the discrete case carry over to the continuous case and defini-
tions can be re-used. In particular:
◦ Iterated expectations: EE(X|Y ) = EX.
◦ Iterated variance: Var(X) = EVar(X|Y ) + Var(E(X|Y )).
◦ Best constant predictor: arg minc∈RE(Y − c)2 = EY .
◦ Best predictor given X: mind: R→RE(Y − d(X))2 = E(Y − E(Y |X))2.
◦ Best linear predictor arg min(a,b)T∈R2 E(Y − (a + bX))2 := (α, β)T , where
α = EY − βEX, β = Cov(X,Y )/Var(X).
◦ The covariance between X and Y is Cov(X,Y ) = EXY − EXEY .
◦ Cov(X,Y ) = E(X − EX)(Y − EY ).
◦ Cov(X,X) = Var(X).
◦ Cov(aX + bY, cX + dY ) = acVar(X) + (ad+ bc)Cov(X,Y ) + bdVar(Y ),
◦ Var(

∑n
i=1Xi) =

∑n
i=1 Var(Xi) +

∑
i 6=j Cov(Xi, Xj).

◦ X and Y independent ⇒ Cov(X,Y ) = 0.
◦ The correlation between X and Y is ρXY := Cov(X,Y )/

√
Var(X)Var(Y ).

◦ |ρXY | ≤ 1 and |ρXY | = 1 ⇔ Y = α+ βX (∃ (α, β)).
◦ Bayes formula: let f̃(y|x) be the conditional density of Y given X = x. Then

f̃(y|x) =
f(x|y)fY (y)

fX(x)
.
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Remark In the statistics part we use a different notation. We let Y := θ,
y =: ϑ, fY (y) =: w(ϑ) and p(x|ϑ) be the conditional pmf or pdf of X given
θ = ϑ and we write

w(ϑ|x) =
p(x|ϑ)w(ϑ)

p(x)
.

where p(x) =
∫
p(x|ϑ)w(ϑ)dϑ. In that context θ can also be a discrete random

variable. Then w(ϑ) is the pmf of θ and p(x) =
∑

ϑ p(x|ϑ)w(ϑ).

Example Let Y and Z be independent, Y ∼ N (ν, τ2) and Z ∼ N (0, σ2).
Define X := Y + Z. Then X ∼ N (ν, τ2 + σ2) and X|Y ∼ N (Y, σ2). Moreover

Y |X ∼ N
(
Xτ2 + νσ2

τ2 + σ2
,
τ2σ2

τ2 + σ2

)
.
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Convolutions and transformations

AD Theorem 13.1 Let (X,Y ) ∈ R2 have density f(x, y) , (x, y) ∈ R2 and let
Z := X + Y . Then

fZ(z) =

∫
f(z − y, y)dy, z ∈ R.

In particular, if X and Y are independent

fZ(z) =

∫
fX(z − y)fY (y)dy, z ∈ R.

Definition Let X1, . . . , Xn be i.i.d. with density f . The density of X1+· · ·+Xn

is called the (n-fold) convolution of f .

AD Theorem 13.3 Let X = (X1, . . . , Xn)T have density f(x), x ∈ Rn and
let S ⊂ Rn be some open set such that P (X ∈ S) = 1. Consider a function
g : S → Rn and define U := g(X). Assume
a) g : S → g(S) =: T is 1-1,
b) h := g−1 is continuously differentiable,
c) det(J(u)) 6= 0 where J(u) := ∂h(u)/∂u is the Jacobian (u ∈ S).
Then

fU (u) = |det(J(u))|fX(h(u)), u ∈ T.
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Standard distributions

Standard discrete distributions

1. Bernoulli distribution with success parameter p ∈ (0, 1). X ∈ {0, 1} and

P (X = 1) = p, EX = p, Var(X) = p(1− p).

2. Binomial distribution with n trials and success parameter p ∈ (0, 1).
X ∈ {0, 1, . . . , n}

P (X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . n,

EX = np, Var(X) = np(1− p).

3. Poisson distribution with parameter λ > 0. X ∈ {0, 1, . . .}

P (X = k) =
λk

k!
e−λ, k = 0, 1, . . . ,

EX = λ, Var(X) = λ.
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Standard continuous distributions

4. Gaussian distribution with mean µ and variance σ2. X ∈ R,

fX(x) :=
1√

2πσ2
exp

[
−1

2

(
x− µ
σ

)2
]
, x ∈ R.

Denoted by X ∼ N (µ, σ2).

EX = µ, var(X) = σ2.

X ∼ N (µ, σ2) ⇔ Z :=
X − µ
σ

∼ N (0, 1).

N (0, 1) is called the standard normal (or Gaussian).

5. The standard normal distribution function.

Φ(x) :=
1√
2π

∫ x

−∞
e−z

2/2 dz, x ∈ R.

Let Φ−1 be its inverse function. Then,

Φ−1(0.9) = 1.28, Φ−1(0.95) = 1.64, Φ−1(0.975) = 1.96.

6. Exponential distribution with parameter λ > 0. X ∈ R+ := [0,∞),

fX(x) =
1

λ
e−x/λ, x ≥ 0.

EX = λ, Var(X) = λ2.

Note: in many textbooks λ is replaced by 1/λ.

7. Gamma distribution with parameters α, λ. X ∈ R+ := [0,∞),

fX(x) =
1

λαΓ(α)
xα−1 e−x/λ, x ≥ 0.

Here Γ(α) is the Gamma function and for integer values Γ(m) = (m−1)!.

EX = αλ, Var(X) = αλ2.

Note: in many textbooks λ is replaced by 1/λ.

8. Beta distribution with parameters r, s. X ∈ [0, 1],

fX(x) =
Γ(r + s)

Γ(r)Γ(s)
xr−1 (1− x)s−1, x ∈ [0, 1].

EX =
r

r + s
, Var(X) =

rs

(r + s)2 (1 + r + s)
.
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9. Chi-Square (χ2) distribution.

The χ2 distribution with m degrees of freedom is the Gamma distribution
with parameters (m/2, 1/2). Denoted by χ2(m). In particular,

X ∼ N (0, 1) ⇒ X2 ∼ χ2(1),

Xj ∼ N (0, 1), j = 1, . . . ,m, i.i.d. ⇒
m∑
j=1

X2
j ∼ χ2(m),

10. Student distribution.

If Z ∼ N (0, 1), Y ∼ χ2(m), Z ⊥ Y , then,

T :=
Z√
Y/m

,

has a student distribution with m degrees of freedom.

Its density is given by

fT (t) =
Γ((m+ 1)/2)√
mπ Γ(m/2)

(
1 +

t2

m

)−(m+1)/2

, t ∈ R.

11. Studentizing. Let {Xi}ni=1 be i.i.d. with N (µ, σ2) distribution. Let
Xn :=

∑n
i=1Xi/n and set

S2
n :=

1

n− 1

n∑
i=1

(Xi −Xn)2.

Then, Xn and S2
n are independent and

√
n
[
Xn − µ

]
Sn

has a Student distribution with n− 1 degrees of freedom.
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Probability and Statistics 401-2604

Overview of definitions and results from statistics

Introduction

In most of the theory the data (observations) are i.i.d. real-valued random
variables X1, . . . , Xn. We call n the sample size. We then say that X1, . . . , Xn

are i.i.d. copies of a random variable X.

We often denote shorthand the data by X ∈ X as well (abuse of notation). The
space X is the observation space (typically (a subset of) Euclidean space).

A statistical model says that X ∼ P ∈ {Pθ : θ ∈ Θ}. The set Θ is called the
parameter space. Typically Θ is (some subset of) Euclidean space.

A parameter of interest is a function g(θ) = Q(Pθ) =: γ.

Definition (LN Section 6.1) An estimator T of a parameter of interest g(θ) ∈
R is a (measurable) map T : X → R.

Remark An estimator is also often called a statistic. A statistic T is a mea-
surable map T : X → R.

Remark Often we denote estimators with a “hat”, e.g. γ̂ as estimator of γ.

Notation If X has distribution Pθ its expectation depends on θ. We (often)
write the expectation with a subscript: Eθ(X).

Remark If the data are (X1, . . . , Xn) an estimator T is thus some function of
X1, . . . , Xn.

Remark We often write EθT (X) =: EθT (or EθT (X1, . . . , Xn) =: EθT ).

Definition (LN Section 6.2) The Mean Square Error (MSE) of an estimator
T of g(θ) ∈ R is

MSEθ(T ) = Eθ(T − g(θ))2.

The bias of T is
biasθ(T ) = EθT − g(θ).

The estimator T is called unbiased if

biasθ(T ) = 0, ∀ θ ∈ Θ.

The standard error of T is

σθ(T ) =
√

Varθ(T ).

Lemma
MSEθ(T ) = bias2

θ(T ) + Varθ(T ).

38



Proof. Write q(θ) := Eθ(T ). Then

MSEθ(T ) = Eθ

(
T − q(θ) + q(θ)− g(θ)

)2

= Eθ

(
T − q(θ)

)2

+

(
q(θ)− g(θ)

)2

+ 2

(
q(θ)− g(θ)

)
Eθ

(
T − q(θ)

)
︸ ︷︷ ︸

=0

= Varθ(T ) + bias2
θ(T ).

tu

Example Let X1, . . . , Xn be i.i.d. copies of X ∈ R where EX =: µ and
Var(X) =: σ2. Then the sample average X̄ =

∑n
i=1Xi/n is an unbiased esti-

mator of µ and the sample variance S2 :=
∑n

i=1(Xi−X̄)2/(n−1) is an unbiased
estimator of σ2. However, S is not an unbiased estimator of σ.

LLN as source of inspiration Let X1, . . . , Xn be i.i.d. copies of X ∈ R where
EX =: µ and Var(X) =: σ2. Then by the LLN X̄ ≈ µ for n large. Thus it
makes sense to estimate µ by X̄. Similarly, for a given some function g, inspired
by the LLN an estimator of Eg(X) is

∑n
i=1 g(Xi)/n and for a given function h

an estimator of h(µ) is h(X̄), etc. For example σ2 = EX2 − µ2 by definition,
so the LLN leads to the estimator

σ̂2 :=
1

n

n∑
i=1

X2
i − (X̄)2

of σ2. Note that σ̂2 = 1
n

∑n
i=1(Xi − X̄)2 = n−1

n S2. For large n, the two
estimators σ̂2 and S2 are close. Again, inspired by the LLN, an estimator of
the CDF F (x) = P (X ≤ x), x ∈ R is

F̂n(x) =
1

n

n∑
i=1

l{Xi≤x}, x ∈ R.

The function F̂n is called the empirical distribution function.
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Bayesian statistics (see e.g. JR)

Data: X ∈ X , where X is some measurable space (usually Rd).

Model: X has distribution Pθ, θ ∈ Θ.

Frequentist statistics assumes the unknown to be θ fixed (nonrandom).

Bayesian statistics assumes θ to be random.

Let p(x|θ) be the pmf/pdf of X ∼ Pθ, θ ∈ Θ (assumed to exist).

Suppose Θ is measurable space an let Π be a given probability distribution on
Θ.

Definition For a dominating measure µ the prior density of θ is

w(ϑ) :=
dΠ

dµ
(ϑ), ϑ ∈ Θ.

Remark
◦ If Θ is countable we let w(·) be the pmf of θ.
◦ If Θ = R and if Π is absolutely continuous, we let w(·) be the pdf of θ.
◦ In both discrete and absolutely continuous case we call w(·) a density. Other
cases will not be considered in this course.

Definition The marginal pmf/pdf of X is

p(x) =

∫
p(x|ϑ)w(ϑ)dµ(ϑ) =

{∑
ϑ p(x|ϑ)w(ϑ) θ discrete∫

ϑ p(x|ϑ)w(ϑ)dϑ θ abs. continuous
, x ∈ X .

For p(x) > 0 the posterior density of θ given X = x is

w(ϑ|x) :=
p(x|ϑ)w(ϑ)

p(x)
.

(Compare with AD Theorem 3.4 and AD Definition 12.6: Bayes rule.)

Remark
The posterior density w(·|x) can be a pmf or pdf, other cases will not be con-
sidered in this course.

Definition The Maximum a Posteriori (MAP) estimator is

θ̂MAP := θ̂MAP(X) := arg max
ϑ∈Θ

w(ϑ|X),

provided the maximum exists.

Note To find θ̂MAP you do not need to calculate the marginal distribution p(·):

θ̂MAP = arg max
ϑ∈Θ

p(X|ϑ)w(ϑ).
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Note We may also write

θ̂MAP = arg max
ϑ∈Θ

{
log p(X|ϑ) + logw(ϑ)

}
.

Classification Example Consider two given pmf’s/pdf’s p0(x) and p1(x), x ∈
X . Given an observation X, we want to classify it as coming from distribution
P0 (with pmf/pdf p0) or P1 (with pmf/pdf p1). Let the prior be

w(ϑ) =

{
w0 ϑ = 0

w1 ϑ = 1

for given 0 < w0 < 1 and w1 = 1− w0. Then the MAP estimator is

θ̂MAP =


1 p1(X)

p0(X) >
w0
w1

γ p1(X)
p0(X) = w0

w1

0 p1(X)
p0(X) <

w0
w1

where γ ∈ {0, 1} is arbitrary (compare with LN Example 2.17: optimal decod-
ing). Here, use that

w(ϑ|x) =

{
p0(x)w0, ϑ = 0

p1(x)w1, ϑ = 1
.

Note that
p(x) = w0p0(x) + w1p1(x), x ∈ X ,

is a mixture of p0 and p1. The estimator Θ̂MAP is often also called Bayes decision.
Indeed, we can reformulate situation in terms of decision theory. There are two
possible actions a = 0 (classify as coming from p0) and a = 1 (classify as coming
from p1). The action space is thus A := {0, 1}. We define the loss function

L(ϑ, a) := l{ϑ 6=a}, (ϑ, a) ∈ Θ×A.

This means one unit loss for making a wrong decision. We call for a decision
φ : X → A its risk

R(ϑ, φ) := EϑL(ϑ, φ(X)) = E[L(ϑ, φ(X))|θ = ϑ].

Thus

R(ϑ, φ) =

{
P0(φ(X) = 1), ϑ = 0

P1(φ(X) = 0), ϑ = 1
.

We then define the Bayes risk of φ as the average risk with θ having density w:

rw(φ) := ER(θ, φ).

Thus

rw(φ) = w0P0(φ(X) = 1) + w1P1(φ(X) = 0) = P (φ(X) 6= θ).
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Bayes decision is defined as the minimizer of the Bayes risk

φBayes = arg min
φ: X→{0,1}

rw(φ).

One may verify that φBayes = θ̂MAP (in this classification problem).

Decision theory (general setup)
Given an action space A and a loss function L : Θ × A → R the risk of a
decision d : X → A, is

R(ϑ, d) := EϑL(ϑ, d(X)) = E[L(ϑ, d(X))|θ = ϑ].

With a prior density w on Θ the Bayes risk is of d is

rw(d) := ER(θ, d) =

{∑
ϑR(ϑ, d(X)w(ϑ), θ discrete∫

ϑR(ϑ, d(X)w(ϑ)dϑ, θ abs. continuous
.

Bayes decision is
dBayes := arg min

d: X→A
rw(d).

Remark In the above setup we did not explicitly state the needed measurability
conditions.

Note For example, when both X and θ are discrete

rw(d) =
∑
ϑ

R(ϑ, d)w(ϑ)

=
∑
ϑ

E[L(ϑ, d(X))|θ = ϑ]w(ϑ)

=
∑
ϑ

∑
x

L(ϑ, d(x))p(x|ϑ)w(ϑ)

=
∑
ϑ

∑
x

L(ϑ, d(x))w(ϑ|x)p(x)

=
∑
x

∑
ϑ

L(ϑ, d(x))w(ϑ|x)p(x)

=
∑
x

E[L(θ, d(x))|X = x]p(x)

Iterated expectations We have

rw(d) = EE[L(θ, d(X)|θ] = EL(θ, d(X)) = EE[L(θ, d(X)|X].

This is the short hand version of what was written out above for the case both
X and θ discrete.

Lemma We have

dBayes(X) = arg min
a∈A

E[L(θ, a)|X].
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Proof.

rw(d) = EL(θ, d(X)) = EE[L(θ, d(X)|X] ≥ E
(

min
a∈A

E[L(θ, a)|X]

)
.

tu

Classification example revisited It holds that

E[L(θ, a)|X = x] = a
p0(x)w0

p(x)
+ (1− a)

p1(x)w1

p(x)

= a
p0(x)w0 − p1(x)w1

p(x)
+
p1(x)w1

p(x)
.

The last term does not depend on a so we can omit it when carrying out the
minimization. Then for any γ ∈ {0, 1},

arg min
a∈{0,1}

a
p0(x)w0 − p1(x)w1

p(x)
=


1 p1(x)w1 > p0(x)w0

γ p1(x)w1 = p0(x)w0

0 p1(x)w1 < p0(x)w0

.

Bayes estimator for quadratic loss
Let Θ ⊂ R, A = R and L(ϑ, a) := (ϑ− a)2. Then

R(ϑ, d) = E[(d(X)− ϑ)2|θ = ϑ] = MSEϑ(d).

Bayes estimator is

dBayes(X) = arg min
a∈R

E[(θ − a)2|X] = E(θ|X)

(compare with AD Example 11.18: best predictor given X).

Example: Bayesian inference for the binomial distribution
Let X|θ ∼ Binomial(n, θ) and θ ∼ Beta(r, s). Then the prior mean is Eθ = r

r+s .
The posterior density is

w(ϑ|x) ∝ p(x|ϑ)w(ϑ) ∝ ϑx(1− ϑ)n−xϑs−1(1− ϑ)r−1

= ϑx+s−1(1− ϑ)n−x+r−1.

So θ|X = x ∼ Beta(x+ r, n− x− s) and Bayes estimator for quadratic loss is

E(θ|X) =
X + r

n+ r + s
.

The MAP estimator is

Θ̂MAP =
X + r − 1

n+ s+ r − 2
.

Example: Bayesian inference for the normal distribution
Let X|θ ∼ N (θ, σ2) were θ ∈ R and where σ2 is known. Suppose θ ∼ N (0, τ2).
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Then we have seen (see the example at the end of the section “Multivariate
continuous distributions”)

θ|X ∼ N
(

τ2

τ2 + σ2
X,

τ2σ2

τ2 + σ2

)
.

Thus Bayes estimator for quadratic loss is

E(θ|X) = cX, c :=
τ2

τ2 + σ2
.

In this case this is also the MAP estimator.
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Method of moments

Let X ∈ R and let the data X1, . . . , Xn be i.i.d. copies of X.

Definition (as AD Definition 4.10 and 7.10) For k ∈ N the k-th moment of X
is

µk := EXk

(if the expectation exists).

Definition The k-th sample moment is

µ̂k :=
1

n

n∑
k=1

Xk
i , k ∈ N.

Note By the LLN µ̂k ≈ µk for n large (provided the moment exists).

Let X ∼ Pθ, where θ ∈ Θ ⊂ Rp. Then the moments of X also depend on θ:

µk = µk(θ) = EθX.

LLN as source of inspiration ;

Definition The methods of moments estimator θ̂ is a solution of

µk(ϑ)ϑ=θ̂ = µ̂k, k = 1, . . . , p.

(assuming a solution exists).

Example A Suppose X ∼ Poisson(λ), λ > 0. Then EX = λ so the methods
of moments estimator is λ̂ = X̄. It holds that Eλ̂ = λ for all λ > 0 so λ̂ is
unbiased. Moreover var(λ̂) = λ/n and we can estimate the variance by

V̂ar(λ̂) := λ̂/n.

By the CLT, λ̂ is approximately N (λ, λ/n)-distributed for n large. Thus

P

(
|λ̂− λ| ≤ z

√
λ/n

)
≈ Φ(z)− Φ(−z) = 2Φ(z)− 1.

We have Φ(1.96) = .975. Therefore

λ̂± (1.96)

√
λ̂/n = X̄ ± (1.96)︸ ︷︷ ︸

≈2

√
X̄/n

is approximately a 95% confidence interval for λ:

P

(
λ ∈

[
λ̂− (1.96)

√
λ̂/n, λ̂+ (1.96)

√
λ̂/n

])
≈ .95.
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See also AD Example 10.19, where 1.96 was replaced by 2 for simplicity and
the approximate 95 % confidence interval was

X̄ +
2

n
± 2

√
X̄ + 1/n

n
.

The two approximate confidence intervals are for n large approximately equal
(the second one is slightly more conservative).

Subexample

xi # days

0 100

1 60

2 32

3 8

≥ 4 0

Here n = 200, x̄ = .74. Then an approximate 95% confidence interval for λ is

x̄± 2
√
x̄/n = [0.62, 0.84].

Let γ := g(λ) := Pλ(X ≥ 4) be the parameter of interest. Then

γ̂ = ĝ(λ) := g(λ̂) = .00697,

and an approximate 95% confidence interval for γ is

g

(
x̄± 2

√
x̄/n

)
= [0.0038, 0.01]

(since λ 7→ g(λ) is a monotone function).

xi − x̄ (xi − x̄)2 # days

-.74 .5476 100

.26 .0676 60

1.26 1.5876 32

2.26 5.1076 8

We find s2 :=
∑n

i=1(xi − x̄)2/(n − 1) = .7561. The sample variance s2 is an
estimate of Var(X). In this case Var(X) = λ. So both x̄ = .74 and s2 = .7561
are estimating λ. The fact that these values are not very different can be seen
as an indication that the Poisson model is appropriate. One may ask which
one of the two estimators is “better”. This is theory treated for example in the
course Fundamentals of Mathematical Statistics.

Example B Let the data X1, . . . , Xn be i.i.d. copies of X ∼ N (µ, σ2), where
both µ and σ2 are unknown. Then the methods of moments estimator is

µ̂ = X̄, σ̂2 =
1

n

n∑
i=1

X2
i − (X̄)2 =

1

n

n∑
i=1

(Xi − X̄)2.
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Example C Let X ∼ Gamma(α, λ):

EX = αλ, Var(X) = αλ2.

Then EX2 = α(α + 1)λ2. So the methods of moments estimator (α̂, λ̂) solve
the two equations

µ̂1 = α̂λ̂, µ̂2 − µ̂2
1 = α̂λ̂2.

It follows that

λ̂ =
µ̂2 − µ̂2

1

µ̂1
, α̂ =

µ̂2
1

µ̂2 − µ̂2
1

.

Example D Let the data X1, . . . , Xn be i.i.d. copies of X where X has pdf

pθ(x) =
1 + θx

2
, −1 ≤ x ≤ 1, −1 ≤ θ ≤ 1.

Then

Eθ(X) =
θ

3
.

The methods of moments estimator is thus θ̂ = 3X̄.

Example E (Mixtures, compare AD Theorem 7.1) Let X have density

pθ(x) := π1
1

τ1
φ

(
x− ν1

τ1

)
+ (1− π1)

1

τ2
φ

(
x− ν2

τ2

)
where φ is the standard normal density. To simplify, we assume that π1 = 1

2 ,
ν1 = 0 and τ1 = 1 are given. We write ν := ν2 and τ := τ2. The unknown
parameter is θ = (ν, τ). We have

EX =
1

2
ν, EX2 =

1

2
+

1

2
(ν2 + τ2).

So the method of moments estimator (ν̂, τ̂) solve

1

2
ν̂ = µ̂1,

1

2
+

1

2
(ν̂2 + τ̂2) = µ̂2.

Hence
ν̂ = 2µ̂1, τ̂

2 = 2µ̂2 − 4µ̂2
1 − 1.

Plug in method The method of moments is inspired by the LLN, but the
LLN can also be a source of inspiration for further constructions.

Example 6.3 LN Let (X,Y ) ∈ R2. Recall the best linear predictor of Y given
X (see AD Example 11.8) is α+ βX with

α = EY − βEX, β =
Cov(X,Y )

Var(X)
.

Let now (X1, Y1), . . . , (Xn, Yn) be i.i.d. copies of (X,Y ). Then, the LLN leads
to the estimators

α̂ := Ȳ − β̂X̄, β̂ :=
1
n

∑n
i=1(Xi − X̄)(Yi − Ȳ )
1
n

∑n
i=1(Xi − X̄)2

.
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The estimator (α̂, β̂)T is called the least squares estimator. Note that(
α̂

β̂

)
= arg min

(a,b)T∈R2

n∑
i=1

(Yi − (a+ bXi))
2.

Example Let X have CDF F . Assume the median m := F−1(1
2) exists. Let F̂n

be the empirical distribution function. Then we can estimate m by a solution
m̂ of F̂n(m̂) ≈ 1/2. The sample median is

m̂ :=

X(n+1
2

) n odd
X(n2 )+X(n2 +1)

2 n even
.

Here X(1) ≤ · · · ≤ X(n) are the order statistics.
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Maximum likelihood (LN Section 6.2.2)

Let the data be X ∼ Pθ, θ ∈ Θ, with pmf/pdf pθ.

Recall the Bayesian MAP estimator

θ̂MAP := arg max
ϑ∈Θ

pϑ(X)w(ϑ)

= arg max
ϑ∈Θ

{
log pϑ(X) + logw(ϑ)

}
.

Definition The maximum likelihood estimator (MLE) of θ is

θ̂MLE := arg max
ϑ∈Θ

pϑ(X)

(assuming the maximum exists).

Note When Θ is a bounded set (in Rp) the MLE is thus the MAP with uniform
prior.

Note
θ̂MLE := arg max

ϑ∈Θ
log pϑ(X).

Remark The pmf/pdf pϑ(X) considered as a function of ϑ is called the likelihood.
In other words, the likelihood is ϑ 7→ pϑ(X).

Remark If the data are actually X1, . . . , Xn, i.i.d. copies of a random variable
X with pmf/pdf pθ, θ ∈ Θ, then the likelihood is

ϑ 7→
n∏
i=1

pϑ(Xi).

The MLE is then

θ̂MLE := arg max
ϑ∈Θ

n∏
i=1

pϑ(Xi)

= arg max
ϑ∈Θ

n∑
i=1

log pϑ(Xi).

The MLE can often (not always) be obtained by setting the derivative of the
log-likelihood to zero:

n∑
i=1

sθ̂(Xi) = 0, sϑ(·) :=
∂

∂ϑ
log pϑ(·).

LLN as source of inspiration: One can show that

θ = arg max
ϑ∈Θ

Eθ log pϑ(X),
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and also - under regularity conditions -

Eθsθ(X) = 0, sϑ :=
∂

∂ϑ
log pϑ.

LN Example 6.9 Let the data be X1, . . . , Xn be i.i.d. copies of X ∼ N (µ, σ2),
where both µ and σ2 are unknown, i.e. θ = (µ, σ2). Writing ϑ := (µ̃, σ̃2) the
log-likelihood is

n∑
i=1

log pϑ(Xi) = −n
2

log(2π)− n

2
log σ̃2 −

∑n
i=1(Xi − µ̃)2

2σ̃2
.

Taking derivatives w.r.t. µ̃ gives∑n
i=1(Xi − µ̂MLE)

σ̂2
MLE

= 0,

so that µ̂MLE = X̄. As

X̄ = arg min
µ̃

n∑
i=1

(Xi − µ̃)2,

it is also called the least squares estimator (LSE) of µ.

Inserting µ̂MLE = X̄ and differentiating w.r.t. σ̃2 gives

− n

2σ̂2
MLE

+

∑n
i=1(Xi − X̄)2

2σ̂4
MLE

= 0

so σ̂2
MLE = 1

n

∑n
i=1(Xi − X̄)2. Thus, in this case the MLE equals the method

of moments estimator.

LN Example 6.8 Let the dataX1, . . . , Xn be i.i.d. copies ofX ∼ Laplace(µ, σ2),
where both µ and σ2 are unknown, i.e. θ = (µ, σ2). The pdf of X is then

pθ(x) =
1

2σ
exp

[
−|x− µ|

σ

]
, x ∈ R.

The log-likelihood based on the sample (X1, . . . , Xn) is

n∑
i=1

log pϑ(Xi) = −n log 2 = n log σ̃ −
∑n

i=1 |Xi − µ̃|
σ̃

, ϑ = (µ̃, σ̃).

It follows that

µ̂MLE = arg min
µ̃

n∑
i=1

|Xi − µ̃|.

For n even the minimizer is not unique. We take the sample median

µ̂MLE = m̂ :=

X(n+1
2

) n odd
X(n2 )+X(n2 +1)

2 n even
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where X(1) ≤ · · · ≤ X(n) are the order statistics. The sample median is often
called the least absolute deviations (LAD) estimator of µ.
Let us briefly see whether the LLN can make sense out of this estimator. One
may verify that

E|X − µ̃| = 2

∫
x>µ̃

(1− F (x))dx+ µ̃− EX,

where F is the CDF of X. One can find

arg min
µ̃
E|X − µ̃|

by setting the derivative of E|X − µ̃| to zero

−2(1− F (µ̃))|µ̃=arg min + 1 = 0.

In other words
arg min

µ̃
E|X − µ̃| = F−1( 1

2 ),

is the theoretical median (provided it exists).
We still have to calculate the MLE of σ. By differentiating the log-likelihood
w.r.t. σ̃ one gets

− n

σ̂MLE
+

∑n
i=1 |Xi − m̂|
σ̂2

MLE

= 0,

which gives σ̂MLE = 1
n

∑n
i=1 |Xi − m̂|.

Remark Estimating the mean EX by the LSE X̄ remains a valid procedure
also for non-Gaussian data. Similarly, the LAD estimator m̂ remains valid
estimator of the median F−1(1

2) also when the data are not Laplacian.

Example Let the data be X ∼ Binomial(n, θ), where the success probability
0 < θ < 1 is unknown. Then for x ∈ {0, 1, . . . , n}

pϑ(x) =

(
n

x

)
ϑx(1− ϑ)n−x,

and

log pϑ = log

(
n

x

)
x log ϑ+ (n− x) log(1− ϑ).

We have
d

dϑ
log pϑ(X) =

X

ϑ
− n−X

1− ϑ
.

Setting this to zero gives

X

θ̂MLE

− n−X
1− θ̂MLE

= 0,

giving

θ̂MLE =
X

n
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(compare with a Bayesian estimator, e.g. the MAP).

LN Example Section 6.3.3 Let the data X1, . . . , Xn be i.i.d. copies of X ∈
{1, . . . , k}. For example, X represents a “class label”. The probability of a
particular label is unknown:

Pθ(X = j) := θj , j = 1, . . . , k,

where θ ∈ Θ = {ϑ ∈ Rk : ϑj ≥ 0 ∀ j,
∑k

j=1 ϑj = 1}. We may write

log pϑ(x) =

k∑
j=1

l{x=j} log ϑj .

Hence the log-likelihood based on X1, . . . , Xn is

n∑
i=1

log pϑ(Xi) =

n∑
i=1

k∑
j=1

l{Xi=j} log ϑj =

k∑
j=1

Nj log ϑj ,

where Nj :=
∑n

i=1 l{Xi=j} = #{Xi = j} counts the number of observations with
the label j (j = 1, . . . , k). To find the maximum of the log-likelihood under the
restriction that

∑k
j=1 ϑj = 1 we use a Lagrange multiplier, we maximize

k∑
j=1

Nj log ϑj + λ(1−
k∑
j=1

ϑj).

Differentiating and setting to zero gives for the MLE θ̂

∂

∂ϑj

{ k∑
j=1

Nj log ϑj + λ(1−
k∑
j=1

ϑj)

}∣∣∣∣
θ̂

=
Nj

θ̂j
− λ = 0.

Thus

θ̂j =
Nj

λ
, j = 1, . . . , k.

The restriction now gives

1 =
k∑
j=1

Nj

λ
,

and since
∑k

j=1Nj = n we obtain λ = n. The MLE is therefore

θ̂j =
Nj

n
, j = 1, . . . , k.
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Hypothesis testing (LN Section 6.3)

Let X ∈ X , X ∼ Pθ, θ ∈ Θ We consider two hypotheses about the parameter
θ: for Θ0 ⊂ Θ, Θ1 ⊂ Θ, Θ0 ∩Θ1 = ∅
H0 : θ ∈ Θ0 the null hypothesis,
H1 : θ ∈ Θ1 the alternative hypothesis.

Example Let X ∼ Binomial(n, θ) and
H0 : θ = 1

2 ,
H1 : θ = 3

4 .
Suppose we observe the value X = 14. We have
PH0(X = 14) = .074 ,
PH1(X = 14) = .112 .
We see that the likelihood PH1(X = 14) is larger than the likelihood PH0(X =
14). The value θ = 3

4 is the maximum likelihood estimate over {1
2 ,

3
4}. The

likelihood ratio is
PH1(X = 14)

PH0(X = 14)
= 1.51.

Is this large enough to reject H0 in favour of H1?

To answer the question in the above example, we need to agree on a criterion
for evaluating whether or not rejecting the null hypothesis is a good decision.
The point of view one uses in statistical hypothesis testing is that the null
hypothesis H0 represents a situation where “everything is as usual”, or “no
evidence found”. For example, if it concerns the decision of putting someone in
prison or not, it makes sense to choose
H0 : the person is innocent ,
H1 : the person is guilty ,
when convicting an innocent person is an error considered worse than not to
convict a guilty person.

The Bayesian approach is to put a prior on H0 and H1. In the frequentist
approach, no prior is used. We can make two errors: rejecting H0 (accepting
H1) when H0 is true (error first kind) and not rejecting H0 when H1 is true
(error second kind). It is (generally) not possible to keep both errors under
control. The idea is now to keep the probability of the error of first kind below
a (small) prescribed value α.

H0 H1

error probability
φ = 1 first =

kind power

error
φ = 0 second

kind

Definition A statistical test3 at given level α (0 < α < 1) is a (measurable)

3We extend this to “randomized” tests φ : X → [0, 1] in the next definition

53



map φ : X → {0, 1} such that

φ(X) =

{
1 : H0 rejected

0 : H0 not rejected
,

and such that
Pθ0(φ(X) = 1) ≤ α ∀ θ0 ∈ Θ0.

The power of the test at θ1 ∈ Θ1 is Pθ1(φ(X) = 1).

Example X ∼ Binomial(n, θ), with n = 20.
H0: θ ≤ 1

2 ,
H1: θ > 1

2 ˙
We choose α = .05. Let

φ(X) :=

{
1 X > c

0 X ≤ c
,

where we now need to choose the “critical value” c is such a way that

Pθ0(X > c) ≤ α ∀ θ0 ≤
1

2
.

We have

ϑ 7→ Pϑ(X > c) =
n∑

x=c+1

(
n

x

)
ϑx(1− ϑ)n−x

is increasing in ϑ so that

max
θ0≤ 1

2

Pθ0(X > c) = Pθ0= 1
2
(X > c) =

n∑
x=c+1

(
n

x

)
1

2n
.

It holds that
Pθ0= 1

2
(X > 15)︸ ︷︷ ︸

=0.0207

< α︸︷︷︸
=0.05

< Pθ0= 1
2
(X > 14)︸ ︷︷ ︸

=0.0577

.

We choose the critical value c as small as possible: c = 15.

Definition A randomized statistical test at given level α (0 < α < 1) is a
(measurable) map φ : X → [0, 1] such that

φ(X) =


1 : H0 rejected

γ ∈ (0, 1) : H0 rejected with probability γ

0 : H0 not rejected

,

and such that
Eθ0φ(X) ≤ α ∀ θ0 ∈ Θ0.

The power of the test at θ1 ∈ Θ1 is Eθ1φ(X).

Example X ∼ Binomial(n, θ), with n = 20.
H0: θ ≤ 1

2 ,
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H1: θ > 1
2 ˙

We choose α = .05. We have

Pθ0= 1
2
(X > 15) < α < Pθ0= 1

2
(X > 14)

so we can write

α = Pθ0= 1
2
(X > 15) + γPθ0= 1

2
(X = 15)

where

γ =
α− Pθ0= 1

2
(X > 15)

Pθ0= 1
2
(X = 15)

= 0.79.

Thus a test at level α is

φ(X) =


1 X > 15

.79 X = 15

0 X < 15

.

Suppose we observe X = 14. Then H0 cannot be rejected.

Simple hypothesis versus simple alternative (LN Section 6.3.3)

H0 : θ = θ0 ,
H1 : θ = θ1 .

Let p0(·) := pθ0(·) be the pmf/pdf under H0 and p1(·) := pθ1 be the pmf/pdf
under H1.

Definition A Neyman-Pearson test is of the form

φNP(X) :=


1 p1(X)

p0(X) > c0

γ p1(X)
p0(X) = c0

0 p1(X)
p0(X) < c0

where c0 ≥ 0 and γ ∈ [0, 1] are given constants.

Neyman-Pearson Lemma Let α ∈ (0, 1) be a given level. Choose c0 and γ
in such a way that

Eθ0φNP(X) = α.

Then for all (randomized) tests φ̃ with Eθ0 φ̃(X) ≤ α it holds that

Eθ1 φ̃(X) ≤ Eθ1φNP(X).

In other words, φNP has maximal power among all tests with level α.

Proof for the discrete case. We have

Eθ1

(
φ̃(X)− φNP(X)

)
=
∑
x

(
φ̃(x)− φNP(x)

)
p1(x)
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=
∑

p1/p0>c0

(φ̃− φNP)︸ ︷︷ ︸
≤0

p1 +
∑

p1/p0=c0

(φ̃− φNP)p1 +
∑

p1/p0<c0

(φ̃− φNP)︸ ︷︷ ︸
≥0

p1

≤ c0

∑
p1/p0>c0

(φ̃− φNP)p0 + c0

∑
p1/p0=c0

(φ̃− φNP)p0 + c0

∑
p1/p0<c0

(φ̃− φNP)p0

= c0Eθ0

(
φ̃(X)− φNP(X)

)
= c0

(
Eθ0 φ̃(X)− α

)
≤ 0.

tu

LN Example 6.13 Consider X ∼ Binomial(n, θ) and
H0 : θ = θ0 ,
H1 : θ = θ1 ,
where θ1 > θ0. Then

p1(x)

p0(x)
=

[
θ1/(1− θ1)

θ0/(1− θ0)

]x(1− θ1

1− θ0

)
> c0

⇔

x log

[
θ1/(1− θ1)

θ0/(1− θ0)

]
︸ ︷︷ ︸

>0 as θ1>θ0

+n log

(
1− θ1

1− θ0

)
> log c0

⇔

x >

log c0 − n log

(
1−θ1
1−θ0

)
log

[
θ1/(1−θ1)
θ0/(1−θ0)

] := c.

A Neyman-Pearson test thus

φNP(X) =


1 X > c

γ X = c

0 X < c

.

If we choose the critical value c in such a way that

Pθ0(X > c)︸ ︷︷ ︸
=
∑
x>c (nx)θ

x
0 (1−θ0)n−x

≤ α ≤ Pθ0(X > c− 1)︸ ︷︷ ︸
=
∑
x>c−1 (nx)θ

x
0 (1−θ0)n−x

and then

γ =
α− Pθ0(X > c)

Pθ0(X = c)
,

then Eθ0φNP(X)) = α and φNP is most powerful among all tests with level α.
Note that c and γ do not depend on θ1: the test only depends on the sign of
θ1 − θ0.

Example Let X1, . . . , Xn be i.i.d. N (µ, σ2
0) where µ is unknown and σ2

0 is
known. Write the density of X1, . . . , Xn as

pµ(x1, . . . , xn) :=
1

(2πσ2
0)n/2

exp

[
−
∑n

i=1(xi − µ)2

2σ2
0

]
.
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Then

pµ1(x1, . . . , xn)

pµ0(x1, . . . , xn)
= exp

[
− 1

2σ2
0

( n∑
i=1

(xi − µ1)2 −
n∑
i=1

(xi − µ0)2

)]

= exp

[
1

2σ2
0

(
−2

n∑
i=1

(xi − µ0) + n(µ1 − µ0)2

)]
= exp

[
1

σ2
0

(
nx̄− nµ0 − n(µ1 − µ0)2/2

)]
It follows that

pµ1(X1, . . . , Xn)

pµ0(X1, . . . , Xn)
> c0 ⇔

{
X̄ > c if µ1 > µ0

X̄ < c if µ1 < µ0

.

To test H0 : µ = µ0 we consider 3 alternative hypotheses.
Right sided

H1 : µ = µ1 > µ0. Then φNP(X1, . . . , Xn) = l{X̄>c} where the critical value c
is such that Eµ0φNP(X1, . . . , Xn) = α. We have

Eµ0φNP(X1, . . . , Xn) = Pµ0(X̄ > c) = Pµ0

(√
n

(X̄ − µ0)

σ0
>
√
n

(c− µ0)

σ0

)
= α

for
√
n

(c− µ0)

σ0
= Φ−1(1− α).

Thus
c = µ0 + Φ−1(1− α)σ0/

√
n.

For example for α = .05 it holds that Φ−1(1− α) = 1.65.

Left sided
H1 : µ = µ1 < µ0. Reject H0 if

X̄ < µ0 − Φ−1(1− α)σ0/
√
n.

Two sided
H1 : µ 6= µ0. The Neyman Pearson lemma cannot be used. It can be shown
(see e.g. Fundamentals of Mathematical Statistics) that the following test is in
some sense optimal: reject H0 if

X̄ > µ0 + Φ−1(1− α
2 )σ0/

√
n or X̄ < µ0 − Φ−1(1− α

2 )σ0/
√
n.

For example for α = .05 it holds that Φ−1(1− α
2 ) = 1.96.
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One sample tests (LN Section 6.3.2)

Theorem Let X1, . . . , Xn be i.i.d. N (µ, σ2). Define X̄ := 1
n

∑n
i=1Xi and S2 :=

1
n−1

∑n
i=1(Xi − X̄)2. Then

√
n

(X̄ − µ)

S
∼ tn−1

the Student distribution with n− 1 degrees of freedom.

Proof. We first show that for all i Xi − X̄ and X̄ are independent (see also
AD Theorem 12.4). This follows from

Cov(Xi − X̄, X̄) = Cov(Xi, X̄)− Cov(X̄, X̄)︸ ︷︷ ︸
=Var(X̄)

=
1

n

n∑
j=1

Cov(Xi, Xj)−
σ2

n
= 0.

The independence now follows from the fact that for multivariate normal ran-
dom variables, zero covariance implies independence. Thus S2 and X̄ are also
independent. Moreover

n∑
i=1

(Xi − µ)2

σ2
=

n∑
i=1

(Xi − X̄)2

σ2
+
n(X̄ − µ)2

σ2
.

By the definition of the χ2-distribution, the right hand side has a χ2
n-distribution.

Moreover n(X̄−µ)2

σ2 has a χ2
1-distribution. Since moreover

∑n
i=1

(Xi−X̄)2

σ2 is inde-

pendent of n(X̄−µ)2

σ2 it must have a χ2
n−1-distribution. The result now follows

from the definition of the Student distribution. tu

Remark The Student distribution is symmetric around 0. The density of the
tn−1-distribution is

fn−1(t) =
Γ(n2 )√

(n− 1)πΓ(n−1
2 )

(
1 +

t2

n− 1

)−n/2
, t ∈ R.

Let c(n− 1, α) be the (1− α)-quantile of the tn−1-distribution. Then we have

c(n− 1, α)

{
> Φ−1(1− α) ∀ n
→ Φ−1(1− α) n→∞

.

The Student test

Let X1, . . . , Xn be i.i.d. N (µ, σ2) where both µ and σ2
0 are unknown.

Right sided
H0 : µ < µ0 ,
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H1 : µ > µ0 .
Reject H0 if

X̄ > µ0 + c(n− 1, α)S/
√
n.

Then
max
µ≤µ0

Pµ(H0 rejected) = Pµ0(H0 rejected) = α.

Left sided
H0 : µ > µ0 ,
H1 : µ < µ0 .
Reject H0 if

X̄ < µ0 − c(n− 1, α)S/
√
n.

Two sided
H0 : µ = µ0 ,
H1 : µ 6= µ0 .
Reject H0 if

X̄ > µ0 + c(n− 1, α2 )S/
√
n or X̄ < µ0 − c(n− 1, α2 )S/

√
n.

Numerical example:

xi (xi − x̄) (xi − x̄)2

4.5 0 0

4 -.5 .25

3.5 -1 1

6 1.5 2.25

5 .5 .25

4 -.5 .25

We have n = 6, x̄ = 4.5,
∑

(xi − x̄)2 = 4, s2 = .8 and s/
√
n = .365. With

α = .05 the (1− α
2 )-quantile of the t5-distribution is c(5, 0.025) = 2.571. Thus

c(5, 0.025)s/
√
n = .939. For example

H0 : µ = 5.1
is rejected when |x̄− 5.1| > .939. Thus H0 : µ = 5.1 is not rejected as

|x̄− 5.1| = .6 < .939.

The values for µ which are not rejected are all µ such that |x̄− µ| ≤ .939, that
is all µ ∈ [3.561, 5.439]. We call [3.561, 5.439] a 95% confidence interval for µ.

Sign test

Let X1, . . . , Xn be i.i.d. with common CDF F . We assume F is continuous in
m := F−1(1

2). We consider the testing problem
H0 : m = m0 ,
H1 : m 6= m0 .
As test statistic we take

T := #{Xi > m0}
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and as (non-randomized) test

φ(T ) :=

{
1 |T − n

2 | ≥ c
0 |T − n

2 | < c

where c is such that

PH0

(
|T − n

2
| ≥ c

)
︸ ︷︷ ︸

=
∑
|k−n2 |≥c

(nk)
1

2n
=:1−G(c)

≤ α

and c is as small as possible. One calls 1−G(|T −n/2|) the p-value. Reject H0

if the p-value is at most α. We can write for c̃ < n/2,

φ(T ) :=

{
1 T ≤ c̃ or T ≥ n− c̃
0 else

,

where
P (T ≤ c̃) + P (T ≥ n− c̃)︸ ︷︷ ︸

=2
∑
k≤c̃ (nk)2−n

≤ α.

Numerical example continued
The normal distribution is symmetric around µ so m = µ. We test
H0 : µ = 5.1 ,
H1 : µ 6= 5.1 .
We have

G(0) = PH0(T ≤ 0 or T ≥ 6) = PH0(T = 0) +PH0(T = 6) =
2

64
= .03125 < .05

so we can take c̃ = 0.4 The observed value of T is T = 1. Therefore we cannot
reject H0. Since n = 6 we have |T − n

2 | = 2. The p-value is

1−G(2) =
14

64
= .21875 > .05.

Definition Let T be a test statistic such that large values of T are evidence
against H0 : θ = θ0. We reject H0 when T ≥ c where c is such that

1−G(c) ≤ α

with 1−G(c) := PH0(T ≥ c). The p-value is then 1−G(T ).

4A randomized test at level α = .05 is

φ̃(T ) =


1 T = 0 or T = 6
1
10

T = 1 or T = 5

0 else

.

Indeed

EH0 φ̃(T ) = PH0(T = 0 or T = 6) +
1

10
PH0(T = 1 or T = 5) = .05.
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Note 1−G is a decreasing function, so

T ≥ c⇒ 1−G(T ) ≤ 1−G(c) = α.

Thus if the p-value is at most α we reject H0.
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Two sample tests

The data consists of two samples X1, . . . , Xn and Y1, . . . , Ym.

The two sample student test

Model:
X1, . . . , Xn︸ ︷︷ ︸
∼N (µ1,σ2)

, Y1, . . . , Ym︸ ︷︷ ︸
∼N (µ2,σ2)

independent

We want to test
H0 : µ1 = µ2

H1 : µ1 6= µ2.

If µ1 = µ2 then for n large X̄ ≈ Ȳ . This leads to rejecting H0 if |X̄ − Ȳ | > c
where the critical value c is to be chosen in such a way that

PH0(|X̄ − Ȳ | > c) = α

where 0 < α < 1 is a given level. So we need to find the distribution of X̄ − Ȳ
under H0. It holds that

X̄ ∼ N
(
µ1,

σ2

n

)
, Ȳ ∼ N

(
µ2,

σ2

m

)
.

Moreover
E(X̄ − Ȳ ) = µ1 − µ2,

and since X̄ and Ȳ are independent

Var(X̄ − Ȳ ) = Var(X̄) + Var(Ȳ ) =
σ2

n
+
σ2

m
= σ2

(
n+m

nm

)
.

Thus

X̄ − Ȳ ∼ N
(
µ1 − µ2, σ

2

(
n+m

nm

))
.

Standardizing gives√
nm

n+m

X̄ − Ȳ − (µ1 − µ2)

σ
∼ N (0, 1).

We consider two cases.

σ2 = σ2
0 known: Then we can take as test statistic

T0 :=

√
nm

n+m

X̄ − Ȳ
σ0

.

Under H0 the statistic T0 has a standard normal distribution. We reject H0

when |T0| > Φ−1(1− α
2 ). Then

PH0(H0 rejected) = PH0

(
|T0| > Φ−1(1− α

2 )

)
= α.
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In other words the critical value is c = Φ−1(1− α
2 )
√

n+m
nm σ0. (With the “com-

mon” choice α = .05 it holds that c = (1.96)
√

n+m
nm σ0, i.e., roughly twice the

standard deviation of X̄ − Ȳ ).

σ2 unknown: To estimate the standard deviation of X̄ − Ȳ we need an esti-
mator of σ2. A good choice turns out to be the “pooled sample” variance

S̃2 :=
1

n+m− 2

{ n∑
i=1

(Xi − X̄)2 +

m∑
j=1

(Yj − Ȳ )2

}
,

which is unbiased. Standardizing with the estimated standard deviation gives
the statistic

T :=

√
nm

n+m

X̄ − Ȳ
S̃

.

But because S̃ is random T is no longer normally distributed. This is not
really a problem, as long as its distribution under H0 does not depend on
unknown parameters. It is now not difficult to show that under H0, T has a
Student distribution with n+m−2 degrees of freedom, the tn+m−2-distribution5.
Therefore, with c(n+m−2, α2 ) the (1− α

2 )-quantile of the tn+m−2-distribution,
we reject H0 if |T | > c(n+m− 2, α2 ) or equivalently if |X̄ − Ȳ | > c̃ where the

critical value c̃ is c̃ = c(n+m− 2, α2 )
√

n+m
nm S̃.

The two sample Wilcoxon text, or Mann-Whitney U test

Model:
X1, . . . , Xn︸ ︷︷ ︸

∼F

, Y1, . . . , Ym︸ ︷︷ ︸
∼G

independent

where F and G are two unknown continuous distributions.

We want to test
H0 : F = G,
H1 : F 6= G.

We construct a test statistic as follows. Let N := n+m be the pooled sample
size and (Z1, . . . , ZN ) := (X1, . . . , Xn, Y1, . . . , Ym) be the pooled sample. In the
pooled sample, let Z(1) < · · · < Z(N) be the order statistics. Let Ri := rank(Xi)
in the pooled sample (i.e. Z(Ri) = Xi) i = 1, . . . , n and Rn+j := rank(Yj) in
the pooled sample, j = 1, . . . ,m. If F = G then (R1, . . . , Rn, Rn+1, . . . , RN ) is
a random permutation of the numbers {1, . . . , N}. This means that under H0

the ranks R1, . . . , Rn have the same distribution as a random sample without
replacement of size n from an urn with N balls numbered from 1 to N . The
Mann-Whitney U statistic is

U :=

n∑
i=1

Ri.

5As in the one sample case,
∑n
i=1(Xi − X̄)2/σ2 has a χ2

n−1-distribution. Similarly,∑n
i=1(Yj − Ȳ )2/σ2 has a χ2

m−1-distribution. The two sums-of-squares are independent and
independent of X̄ and Ȳ .
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The Wilcoxon test statistic is

W := #{Xi > Yj}.

One may verify that U and W are equivalent:

U = W +
n(n+ 1)

2
.

numerical example

z rank

x1 = 36 8

x2 = 9 4

x3 = 7 2

x4 = 100 9

x5 = 3 1

y1 = 5 3

y2 = 37 7

y3 = 11 5

y4 = 12 6

Table 1: n = 5, m = 4, EH0(U) = 25, u = 24, w = 9

Lemma
i) EH0(U) = n(N+1)

2

ii) VarH0(U) = nm(N+1)
12 .

Proof. (Compare AD, Section 6.5 on the Hypergeometric distribution.)
i) For all i

PH0(Ri = k) =
1

N
, k = 1, . . . N.

Hence

EH0Ri =
N∑
k=1

k
1

N
=
N + 1

2

and so

EH0(U) =
n(N + 1)

2
.

ii) For all i

EH0R
2
i =

N∑
k=1

k2 1

N
=

(N + 1)(2N + 1)

6

so

VarH0(Ri) =
(N + 1)(2N + 1)

6
− (N + 1)2

4
=
N2 − 1

12
=: σ2.

Further for i 6= j

EH0RiRj =
∑
k 6=l

kl
1

N(N − 1)
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=
N(N + 1)2

4(N − 1)
− (N + 1)(2N + 1)

6(N − 1)
=

(N + 1)(3N2 −N − 2)

12(N − 1)
.

Thus

CovH0(Ri, Rj) =
(N + 1)(3N2 −N − 2)

12(N − 1)
− (N + 1)2

4
= − σ2

N − 1
.

It follows that

VarH0(

n∑
i=1

Ri) = nσ2 − n(n− 1)
σ2

N − 1
= nσ2N − n

N − 1
.

tu

Corollary EH0(W ) = nm
2 , VarH0(W ) = nm(N+1)

12 .

Standardizing:

T :=
U − EH0(U)√

VarH0(U)
=
W − EH0(W )√

VarH0(W )
.

For n and m large, T has under H0 approximately a N (0, 1)-distribution. (This
does not follow from the “usual” CLT.)

Numerical example continued

|T | = |24− 25|√
20×8

12

=

√
3

7
= .655.

The approximate p-value is 2(1− Φ(.655)) = .513.
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Goodness-of fit tests

Kolmogorov-Smirnov tests

Model: X1, . . . , Xn i.i.d. with CDF F .

H0 : F = F0.

Recall the empirical distribution function

F̂n(x) :=
1

n

n∑
i=1

l{Xi≤x}, x ∈ R.

Kolmogov-Smirnov tests are based on a comparison of F̂n with F0. The test
statistic is

T∞ := sup
x
|F̂n(x)− F0(x)|,

or its variants

Tp :=

∫
|F̂n(x)− F0(x)|pdx, 1 ≤ p <∞.

An approximation of the distribution of Tp (1 ≤ p ≤ ∞) under the null hypoth-
esis follows from probability theory (not treated here). One may also simulate
the null-distribution.

The χ2-test: simple hypothesis

Let X ∈ {1, . . . , q} represent a class label. Write

Pθ(X = j) := θj ,

where

θ ∈ Θ := {ϑ = (ϑ1, . . . , ϑq) : ϑj ≥ 0 ∀ j,
q∑
j=1

ϑj = 1}.

Suppose we want to test
H0 : θ = θ0 .
The data consist of i.i.d. copies X1, . . . , Xn of X. The maximum likelihood
estimator of θ is

θ̂j =
Nj

n
, Nj := #{Xi = j}, j = 1, . . . , q.

The idea is now to reject H0 if θ̂ is very different from the hypothesized θ0.
One may use for instance the Euclidean distance between θ̂ and θ0 as a test
statistic. One may however want to take into account the different variances of
the estimators of the components. A test statistic that does so is the so-called
χ2 test statistic

χ2 := n

q∑
j=1

(θ̂j − θ0,j)
2

θ0,j
=

q∑
j=1

(Nj − nθ0,j)
2

nθ0,j
.
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Theorem For n large, PH0(χ2 ≤ t) ≈ G(t) for all t, where G is the CDF of a
χ2(q − 1)-distribution.

No proof. (See Fundamentals of Mathematical Statistics for a proof.)

Special case: q = 2. Then X := N1 ∼ Binomial(n, p) where p := θ1, and
N2 = n−X, θ2 = 1− p. So

χ2 =
(X − np)2

np
+

(n−X − n(1− p))2

n(1− p)
=

(X − np)2

np(1− p)
.

By the CLT
X − np√
np(1− p)

is approximately N (0, 1)-distributed, and so its square

(X − np)2

np(1− p)

is approximately χ2(1)-distributed (by the definition of the χ2-distribution).

The χ2-test: composite hypothesis

The random variable X ∈ {1, . . . , q} again represent a class label and

Pθ(X = j) := θj , j = 1, . . . , q.

Suppose we want to test m < q − 1 restrictions
H0 : Rk(θ) = 0, k = 1, . . . ,m . Let

θ̂0 := arg max
ϑ∈Θ: Rk(ϑ)=0, k=1,...,m

q∑
j=1

Nj log ϑj

be the maximum likelihood estimator under the m restrictions. Define the test
statistic

χ2 :=

q∑
j=1

(Nj − nθ̂0,j)
2

nθ̂0,j

.

Under some regularity conditions, the distribution of χ2 under H0 is approxi-
mately χ2(m). Thus we reject H0 when χ2 > G−1(1− α) where G is the CDF
of the χ2(m)-distribution. Then

PH0(H0 rejected) ≈ α.

Note A special case is the simple hypothesis H0 : θ = θ0. This corresponds to
m = q − 1 restrictions.

Contingency tables

This paragraph treats a special case of the previous paragraph.
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Let X := (Y,Z) ∈ {(k, l) : k = 1, . . . , p, l = 1, . . . , q} and

Pθ

(
X = (k, l)

)
:= θk,l

where

θ ∈ Θ = {ϑ = {ϑk,l : k = 1, . . . , p, l = 1, . . . , q}, ϑk,l ≥ 0 ∀ k, l
p∑

k=1

q∑
l=1

ϑk,l = 1}.

We aim at testing whether Y and Z are independent. Define the marginals

ηk :=

q∑
l=1

θk,l (k = 1, . . . , p), ξl :=

p∑
k=1

θk,l (l = 1, . . . , q).

The null hypothesis is H0 : θk,l = ηkξl, ∀ k, l .

The data are {Xi = (Yi, Zi) : i = 1, . . . , n}, i.i.d. copies of X = (Y, Z). The
maximum likelihood estimator is as before

θ̂k,l =
Nk,l

n
, k = 1, . . . , p, l = 1, . . . , q,

where Nk,l = #{(Yi, Zi) = (k, l)} k = 1, . . . , p, l = 1, . . . , q.

Write

Nk,+ :=

q∑
l=1

Nk,l (k = 1, . . . , p), N+,l :=

p∑
k=1

Nk,l (l = 1, . . . , q).

Lemma The maximum likelihood under the restrictions of H0 is

η̂k =
Nk,+

n
(k = 1, . . . , p), ξ̂l =

N+,l

n
(l = 1, . . . , q).

Proof. The log-likelihood is

p∑
k=1

q∑
l=1

Nk,l log ϑk,l.

We now have the restriction ϑk,l = η̃kξ̃l for some non-negative η̃k, ξ̃l, with∑p
k=1 η̃k = 1 and

∑q
l=1 ξ̃l = 1. The restricted log-likelihood is therefore

p∑
k=1

q∑
l=1

Nk,l log(η̃kξ̃l)

=

p∑
k=1

q∑
l=1

Nk,l log η̃k +

p∑
k=1

q∑
l=1

Nk,l log ξ̃l
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=

p∑
k=1

Nk,+ log η̃k +

q∑
l=1

N+,l log ξ̃l.

The two terms can now be maximized separately, as done previously (where we
used a Lagrange multiplier). tu

It follows that

χ2 =

p∑
k=1

q∑
l=1

(Nk,l −Nk,+N+,l/n)2

Nk,+N+,l/n
.

The original number of free parameters is

pq − 1.

The number of free parameters under H0 is

p− 1 + q − 1.

The number of restrictions is therefore

m =

(
pq − 1

)
−
(
p− 1 + q − 1

)
= (p− 1)(q − 1).

So χ2 is approximately χ2((p− 1)(q − 1))-distributed under H0.

Special case: p = q = 2

N1,1 N1,2 N1,+

N2,1 N2,2 N2+

N+,1 N+,2 n

or, using alternative symbols

A B R

C D S

P Q n

Then

χ2 =
n(AD −BC)2

PQRS
.

It has approximately a χ2(1)-distribution under H0.
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In the above example

χ2 = 50× (26× 11− 6× 7)2

32× 18× 33× 17
= 9.212.

Remark Let X ∼ Binomial(n1, p1) and Y ∼ Binomial(n2, p2) be independent
and suppose we want to test
H0 : p1 = p2 =: p where 0 < p < 1 is an unknown common value.
An estimator of p1 is p̂1 = X/n1 and an estimator of p2 is p̂2 = Y/n2. We reject
H0 if |p̂1 − p̂2|2 is large.

X Y X + Y

n1 −X n2 − Y n− (X + Y )

n1 n2 n := n1 + n2

We have
VarH0(p̂1 − p̂2) = p(1− p) n

n1n2
,

and we can estimate this by

V̂arH0(p̂1 − p̂2) := p̂(1− p̂) n

n1n2
,

where p̂ = (X + Y )/n. The standardized test statistic is now

T :=
|p̂1 − p̂2|2

p̂(1− p̂) n
n1n2

=
n(AD −BC)2

PQRS
= χ2.
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Confidence sets (LN Section 6.4)

Numerical example: (Recap)

xi (xi − x̄) (xi − x̄)2

4.5 0 0

4 -.5 .25

3.5 -1 1

6 1.5 2.25

5 .5 .25

4 -.5 .25

We have n = 6, x̄ = 4.5, s2 = .8 and s/
√
n = .365. With α = .05 the (1− α

2 )-
quantile of the t5-distribution is c(5, 0.025) = 2.571. Thus c(5, 0.025)s/

√
n =

.939. Assuming i.i.d. Gaussian data the interval

x̄± c(5, 0.025)s/
√
n = 4.5± .939 = [3.561, 5.439]

is a 95% confidence interval for µ.

Consider an X ∈ X with distribution Pθ depending on θ ∈ Θ. Let g(θ) ∈ R be
a parameter of interest. Write γ = g(θ) and Γ := {g(θ) : θ ∈ Θ}.

Recall that a statistic is a measurable map X → R.

Definition Let T = T (X) and T̄ = T̄ (X) be two statistics with T ≤ T̄ . One
calls [T , T̄ ] a (1− α)-confidence interval for g(θ) if

Pθ

(
T ≤ g(θ) ≤ T̄

)
≥ 1− α, ∀ θ ∈ Θ.

More generally, we may consider confidence sets. We consider a mapping

J := X → {subsets of Γ}

(such that I(γ) := {x : γ ∈ J(x)} is measurable for all γ ∈ Γ).

Definition Let . One calls J a (1− α)-confidence set for g(θ) if

Pθ

(
g(θ) ∈ J(X)

)
≥ 1− α, ∀ θ ∈ Θ.

Example Let X1, . . . , Xn be i.i.d. N (µ, σ2).

Confidence interval for µ, σ2 =: σ2
0 known

Then
[X̄ − Φ−1(1− α

2 )σ0/
√
nX̄ + Φ−1(1− α

2 )σ0/
√
n]

is a (1− α)-confidence interval for µ:

Pµ

(
X̄ − Φ−1(1− α

2 )σ0/
√
n ≤ µ ≤ X̄ + Φ−1(1− α

2 )σ0/
√
n

)
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= Pµ

(
µ− Φ−1(1− α

2 )σ0/
√
n ≤ X̄ ≤ µ+ Φ−1(1− α

2 )σ0/
√
n

)
= P

(
|X̄ − µ|
σ0/
√
n
≤ Φ−1(1− α

2 )

)
= 1− α.

Confidence interval for µ, σ2 unknown
Then

[X̄ − c(n− 1, α2 )S/
√
n, X̄ + c(n− 1, α2 )S/

√
n],

is a (1− α)-confidence interval for µ. Here

S2 :=
1

n− 1

n∑
i=1

(Xi − X̄)2

is the sample variance and c(n − 1, α2 ) the (1 − α
2 )-quantile of the Student

distribution with n− 1 degrees of freedom.

Confidence interval for σ2, µ = µ0 known
Then [

nσ̂2

G−1
n (1− α

2 )
,

nσ̂2

G−1
n (α2 )

]
is a (1− α)-confidence interval for σ2. Here

σ̂2 :=
1

n

n∑
i=1

(Xi − µ0)2

and Gn is the CDF of the χ2(n)-distribution. Indeed,

Pσ2

(
nσ̂2

G−1
n (1− α

2 )
≤ σ2 ≤ nσ̂2

G−1
n (α2 )

)

= Pσ

(
G−1
n ( α2 ) ≤ nσ̂2

σ2
≤ G−1

n (1− α
2 )

)
= 1− α

since nσ̂2/σ2 ∼ χ2(n).

Confidence interval for σ2, µ unknown
Then [

(n− 1)S2

G−1
n−1(1− α

2 )
,
(n− 1)S2

G−1
n−1(α2 )

]
is a (1− α)-confidence interval for σ2. Here

S2 :=
1

n− 1

n∑
i=1

(Xi − X̄)2

and Gn−1 is the CDF of the χ2(n − 1)-distribution. A one-sided confidence
interval for σ2 (right-sided) is [

0,
(n− 1)S2

G−1
n−1(α)

]
,
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since

Pµ,σ2

(
σ2 ≤ (n− 1)S2

G−1
n−1(α)

)
= P

(
(n− 1)S2

σ2
≥ G−1

n−1(α)

)
= 1− α.

Numerical example continued

The sample size is n = 6. We take α = .05. Then G−1
n−1(1 − α

2 ) = 12.83 and

G−1
n−1(α2 ) = .83. The sample variance is s2 = .8. So a 95% confidence interval

for σ2 is
.312 ≤ σ2 ≤ 4.18

and so a 95% confidence interval for σ is

.56 =
√
.312 ≤ σ ≤

√
4.18 = 2.19.

If one is interested in a upper bound for σ2 we use that G−1
n−1(α) = 1.145. So a

one-sided 95% confidence interval for σ2 is

σ2 ≤ 3.491

and a one-sided 95% confidence interval for σ is

σ ≤
√

3.491 = 1.868.

AD Example 10.19 Let X ∼ Poisson(λ).
We take α = .05 and for simplicity replace Φ−1(1− α

2 ) = 1.96 by 2.

Approximate confidence interval for λ using the CLT

For λ large, (X − λ)/
√
λ is approximately N (0, 1) distributed. Hence

Pλ

(
|X − λ|√

λ
≤ 2

)
≈ .95.

Rewrite this to

Pλ

(
λ ∈

[
X + 2− 2

√
X + 1, X + 2 + 2

√
X + 1

])
≈ .95.

So [
X + 2− 2

√
X + 1, X + 2 + 2

√
X + 1

]
is an approximate 95% confidence interval.
Approximate confidence interval for λ using the CLT and estimated variance

We can estimate the variance by

V̂ar(X) := X.

For λ large X − λ/
√
X is approximately N (0, 1)-distributed (see e.g. Funda-

mentals of Mathematical Statistics). An approximate 95% confidence interval
based on this is

[X − 2
√
X,X + 2

√
X].
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The duality between confidence sets and tests

Let X ∈ X , X ∼ Pθ, θ ∈ Θ and let γ := g(θ) ∈ R be a parameter of interest.
Define Γ := {γ = g(θ) : θ ∈ Θ}. Consider some set C ⊂ X × Γ and let for
γ ∈ Γ

A(γ) := {x : (x, γ) ∈ C} ⊂ X ,
and for x ∈ X

B(x) := {γ : (x, γ) ∈ C} ⊂ Γ.

(We assume that A(γ) is measurable for all γ ∈ Γ.)

Duality Theorem (LN Theorem 6.4)
The set B(X) is a (1− α)-confidence set
⇔
For all γ0 ∈ Γ, φ(X, γ0) := lAc(γ0)(X) is a level α test for H0 : g(θ) = γ0.

Proof.

Pθ

(
φ(X, γ) = 1

)
= Pθ

(
X /∈ A(γ)

)
= Pθ

(
(X, γ) /∈ C

)
= 1− Pθ

(
(X, γ) ∈ C

)
= 1− Pθ

(
γ ∈ B(X)

)
.

tu

Example Let X1, . . . , Xn be i.i.d. N (µ, σ2) with σ2 =: σ2
0 known. We let

γ := µ. Then we may take

B(X1, . . . , Xn) =

[
X̄ − Φ−1(1− α

2 )σ0/
√
n, X̄ + Φ−1(1− α

2 )σ0/
√
n

]
,

and then

A(µ) =

[
µ− Φ−1(1− α

2 )σ0/
√
n, µ+ Φ−1(1− α

2 )σ0/
√
n

]
.

Example 6.15 Consider X ∼ Binomial(n, θ) with 0 ≤ θ ≤ 1 unknown. We
present three ways for the construction of confidence intervals for θ.
Exact confidence interval using the Duality Theorem

For the hypothesis
H0 : θ = θ0 ,
we use the test

φ(X, θ0) :=

{
1 X > c̄(θ0) orX < c(θ0)

0 else
,

where c(θ0) ≤ c̄(θ0) (both in {0, . . . , n}) are determined by

Pθ0

(
X > c̄(θ0)

)
︸ ︷︷ ︸

=
∑
k>c̄(θ0) (nk)θ

k
0 (1−θ0)n−k

≤ α

2
≤ Pθ0

(
X > c̄(θ0)− 1

)
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Pθ0

(
X < c(θ0)

)
≤ α

2
≤ Pθ0

(
X < c(θ0) + 1

)
.

So
A(θ0) = {x ∈ {0, . . . , n} : c(θ0) ≤ x ≤ c̄(θ0)}

and
C = {(x, θ) ∈ {0, . . . , n} × [0, 1] : c(θ) ≤ x ≤ c̄(θ)},

B(x) = {θ ∈ [0, 1] : c(θ) ≤ x ≤ c̄(θ)}.

We let for x ∈ {0, . . . , n− 1}, θ̄(x) be defined by∑
k<x

(
n

k

)
θ̄(x)k(1− θ̄(x))n−k =

α

2

and for x ∈ {1, . . . , n}, θ(x) be defined by∑
k>x

(
n

k

)
θ(x)k(1− θ(x))n−k =

α

2

and further take θ̄(n) = 1 and θ(0) = 0. Then [θ(X), θ̄(X)] is an exact (1−α)-
confidence interval for θ.
Approximate confidence interval using the CLT

We reject
H0 : θ = θ0 ,
when

|X − nθ0|√
nθ0(1− θ0)

> Φ−1(1− α
2 )︸ ︷︷ ︸

:=z

.

So

B(x) =

{
θ :

|X − nθ|√
nθ(1− θ)

> z

}

=

{
θ ∈

x+ z2

2

n+ z2
±

√
z2x(n−x)

n + z4

4

n+ z2

}
.

Approximate confidence interval using the CLT and estimated variance
By the CLT

X − nθ√
Varθ(X)

is approximately N (0, 1)-distributed. We have Varθ(X) = nθ(1− θ) which can
be estimated by

V̂arθ(X) := nθ̂(1− θ̂).

Then
X − nθ√
V̂arθ(X)
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is still approximately N (0, 1)-distributed (see for example Fundamentals of
Mathematical Statistics). We can then take

B(x) :=

{
θ ∈ x

n
± z

√
x

n

(
1− x

n

)
/
√
n

}

=

{
θ ∈ x

n
±

√
z2x(n−x)

n

n

}
.

Numerical example
Let n = 38 and suppose we observe X = 20. Then, using the third method
above, an approximate 95% confidence interval for θ (and using Φ−1(.975) ≈ 2)
is

20

38
± 2

√
20× 18

383
= .526± .162.
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The linear model

Consider n independent observations Y1, . . . , Yn. This time we do not assume
that they are identically distributed. Let X ∈ Rn×p be a given matrix with
(non-random) entries {xi,j : i = 1, . . . , n, j = 1, . . . , p}. One calls X the
design matrix. The fact that we assume it to be non-random means we consider
the case of fixed design. We now look for the best linear approximation of Yi
given xi,1, . . . , xi,p. We measure the fit using the residual sum of squares. This
means that we minimize

n∑
i=1

(
Yi − a−

p∑
j=1

xi,jbj

)2

.

over a ∈ R and b = (b1, . . . , bp)
T ∈ Rp.

To simplify the expressions, we rename the quantities involved as follows. Define
for all i, xi,p+1 := 1 and define bp+1 := a. Then for all i a +

∑p
j=1 xi,jbj =∑p+1

j=1 xi,jbj . In other words, if we put in the matrix X a column containing
only 1’s then we may omit the constant a. Thus, putting the column of only
1’s in front and replacing p+ 1 by p, we let

X :=


1 x1,2 · · · x1,p

1 x2,2 · · · x2,p
...

...
. . .

...
1 xn,2 · · · xn,p


Then we minimize

n∑
i=1

(
Yi −

p∑
j=1

xi,jbj

)2

.

over b = (b1, . . . , bp)
T ∈ Rp.

Let us denote the Euclidean norm of a vector v ∈ Rn by

‖v‖2 :=

√√√√ n∑
i=1

v2
i .

Write

Y =

Y1
...
Yn

 .

Then
n∑
i=1

(
Yi −

p∑
j=1

xi,jbj

)2

= ‖Y −Xb‖22.

One calls
β̂ := arg min

b∈Rp
‖Y −Xb‖22
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the least squares estimator.

The distance between Y and the space {Xb : b ∈ Rp} spanned by the columns
of X is minimized by projecting Y on this space. In fact, one has

1

2

∂

∂b
‖Y −Xb‖22 = −XT (Y −Xb).

It follows that β̂ is a solution of the so-called normal equations

XT (Y −Xβ̂) = 0

or
XTY = XTXβ̂.

If X has rank p, the matrix XTX has an inverse (XTX)−1 and we get

β̂ = (XTX)−1XTY.

The projection of Y on {Xb : b ∈ Rp} is

X(XTX)−1XT︸ ︷︷ ︸
projection

Y.

Recall that a projection is a linear map of the form PP T such that P TP = I.
We can write X(XTX)−1XT := PP T .6

Example with p = 1
For p = 1

X =


1 x1

1 x2
...

...
1 xn

 .

Then

XTX =

(
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x
2
i

)
,

(XTX)−1 =

(
n

n∑
i=1

x2
i − (

n∑
i=1

xi)
2

)−1( ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n

i=1 xi n

)

=

( n∑
i=1

(xi − x̄)2

)−1( 1
n

∑n
i=1 x

2
i −x̄

−x̄ 1

)
.

Moreover

XTY =

(
nȲ∑n
i=1 xiYi

)
.

6Write the singular value decomposition of X as X = PφQT , where φ = diag(φ1, . . . , φp)
contains the singular values and where PTP = I and QTQ = I.

78



We now let (changing notation: α̂ := β̂1, β̂ := β̂2)(
α̂

β̂

)
= (XTX)−1XTY

=

( n∑
i=1

(xi − x̄)2

)−1( 1
n

∑n
i=1 x

2
i −x̄

−x̄ 1

)(
nȲ∑n
i=1 xiYi

)

=

( n∑
i=1

(xi − x̄)2

)−1(∑n
i=1 x

2
i Ȳ − x̄

∑n
i=1 xiYi

−nx̄Ȳ +
∑n

i=1 xiYi

)

=

( n∑
i=1

(xi − x̄)2

)−1(∑n
i=1(xi − x̄)2 − x̄(

∑n
i=1 xiYi − nx̄Ȳ )∑n

i=1 xiYi − nx̄Ȳ

)
.

Here we used that
∑n

i=1 x
2
i =

∑n
i=1(xi − x̄)2 + nx̄2. We can moreover write

n∑
i=1

xiYi − nx̄Ȳ =

n∑
i=1

(xi − x̄)(Yi − Ȳ ).

Thus (
α̂

β̂

)
=

(
Ȳ − β̂x̄∑n

i=1(xi−x̄)(Yi−Ȳ )∑n
i=1(xi−x̄)2

)
.

These expressions coincide with what we derived as method of moments estima-
tors (see also LN Example 6.3). See also AD Example 11.18 for the theoretical
counterpart.
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Simulated data with Y = .3 + .6× x+ ε, ε ∼ N (0, 1
4), α̂ = .19 , β̂ = .740

Definition For f = EY we let β∗ := (XTX)−1XT f and we call Xβ∗ the best
linear approximation of f .

Lemma Suppose EεεT = σ2I. Then
i) Eβ̂ = β∗, Cov(β̂) = σ2(XTX)−1,
ii) E‖X(β̂ − β∗)‖22 = σ2p,
iii) E‖Xβ̂ − f‖22 = ‖Xβ∗ − f‖22︸ ︷︷ ︸

approximation
error

+ σ2p︸︷︷︸
estimation

error

.
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Proof.
i) By straightforward computation

β̂ − β∗ = (XTX)−1XT︸ ︷︷ ︸
:=B

ε.

We therefore have
E(β̂ − β∗) = BEε = 0,

and the covariance matrix of β̂ is

Cov(β̂) = Cov(Bε) = B Cov(ε)︸ ︷︷ ︸
=σ2I

BT

= σ2BBT = σ2(XTX)−1.

ii) Define the projection PP T := X(XTX)−1XT . Then

‖X(β̂ − β∗)‖22 = ‖PP T ε‖22 :=

p∑
j=1

V 2
j ,

where V := P T ε,
EV = P TEε = 0,

and
Cov(V ) = P TCov(ε)P = σ2I.

It follows that

E

p∑
j=1

V 2
j =

p∑
j=1

EV 2
j = σ2p.

iii) It holds by Pythagoras’ rule for all b

‖Xb− f‖22 = ‖X(b− β∗)‖22 + ‖Xβ∗ − f‖22

since Xβ∗ − f is orthogonal to X. tu

Lemma Suppose ε := Y − f ∼ N (0, σ2I). Then we have
i) β̂ − β∗ ∼ N (0, σ2(XTX)−1),

ii)
‖X(β̂−β∗)‖22

σ2 ∼ χ2(p).

Proof.
i) Since β̂ is a linear function of the multivariate normal ε, the least squares
estimator β̂ is also multivariate normal.
ii) Define the projection PP T := X(XTX)−1XT . Then

‖X(β̂ − β∗)‖22 = ‖PP T ε‖22 :=

p∑
j=1

V 2
j .

Now V := P T ε has i.i.d. N (0, σ)2 entries. tu
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Remark More generally, many estimators are approximately normally dis-
tributed (for example the sample median) and many test statistics have ap-
proximately a χ2 null-distribution (for example the χ2 goodness-of-fit statis-
tic). This phenomenon occurs because many models can in a certain sense
be approximated by the linear model and many minus log-likelihoods resemble
the least squares loss function. Understanding the linear model is a first step
towards understanding a wide range of more complicated models.

Corollary Suppose the linear model is well-specified: for some β ∈ Rp

EY = Xβ.

Assume ε := Y − EY ∼ N (0, σ2). where σ2 := σ2
0 is known. Then a test for

H0 : β = β0 ,
is:
reject H0 when ‖X(β̂ − β0)‖22/σ2

0 > G−1
p (1− α),

where Gp is the CDF of a χ2(p)-distributed random variable.

Remark When σ2 is unknown one may estimate it using the estimator

σ̂2 =
‖ε̂‖22
n− p

,

where ε̂ := Y − Xβ̂ is the vector of residuals. Under the assumptions of the
previous corollary (but now with possibly unknown σ2) the test statistic ‖X(β̂−
β0)‖22/σ̂2 has a so-called F -distribution with p and n− p degrees of freedom.
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High-dimensional statistics

Let X1, . . . , Xn be i.i.d. (say) copies of X ∼ Pθ, θ ∈ Θ ⊂ Rp. Thus, the number
of parameters is p and the number of observations is n. In high-dimensional
statistics, p is “large”, possibly p� n. We consider here a prototype example,
namely the linear model.

In the linear model one has data (X1, Y1), . . . , (Xn, Yn) with Xi ∈ Rp a p-
dimensional row vector and Yi ∈ R (i = 1, . . . , n) and one wants to find a good
linear approximation using the least squares loss function

b 7→
n∑
i=1

(
Yi −

p∑
j=1

Xi,jbj

)2

,

Define (with some clash of notation) the design matrix

X :=

X1
...
Xn

 =

X1,1 · · · X1,p
...

. . .
...

Xn,1 · · · Xn,p


and the vector of responses

Y :=

Y1
...
Yn

 .

Then
n∑
i=1

(
Yi −

p∑
j=1

Xi,jbj

)2

= ‖Y −Xb‖22.

If p ≥ n minimizing this over all b ∈ Rp gives a “perfect” solution β̂LS with
Xβ̂LS = Y . This solution just reproduces the data and is therefore of no use.
We say that it overfits.

Definition The ridge regression estimator is

β̂ridge := arg min
b∈R

{
‖Y −Xb‖22 + λ2‖b‖22

}
,

where λ > 0 is a regularization parameter.

Definition The Lasso estimator is

β̂Lasso := arg min
b∈R

{
‖Y −Xb‖22 + 2λ‖b‖1

}
,

where λ > 0 is a regularization parameter and ‖b‖1 :=
∑p

j=1 |bj | is the `1-norm
of b .

Note Consider the model Y = Xβ+ε with ε ∼ N (0, σ2I). The ridge regression
estimator is the MAP estimator using as prior β1, . . . , βp i.i.d. ∼ N (0, τ2). The
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Lasso estimator is the MAP using as prior β1, . . . , βp i.i.d. ∼ Laplace(0, τ2).
The tuning parameter is then in both cases λ2 = σ2/τ2.

Remark As λ grows the ridge estimator shrinks the coefficients. They will
however not be set exactly to zero. The coefficients of the Lasso estimator
shrink as well, and some - or even many - are set exactly to zero. The ridge
estimator can be useful if p is moderately large. For very large p the Lasso is to
be preferred. The idea is that one should not try to estimate something when
the signal is below the noise level. Instead, then one should simply put it to
zero.

Remark Both ridge estimator and Lasso are biased. As λ increases the bias
increases, but the variance decreases.

Remark The regularization parameter λ is for example chosen by using “cross
validation” or (information) theoretic or Bayesian arguments.

Lemma The ridge estimator β̂ridge is given by

β̂ridge = (XTX + λ2I)−1XTY.

Proof. We have

1

2 ∂
∂b

{
‖Y −Xb‖22 +λ2‖b‖22

}
= −XT (Y −Xb)+λ2b = −XTY +

(
XTX+λ2I

)
b.

The estimator β̂ridge puts this to zero. tu

For the Lasso estimator there is no explicit expression in general. We therefore
only consider the special case of orthogonal design and that all columns in X
have the same length. If X has i.i.d. rows, this assumption is not very likely, so
we therefore assume X is non-random at this point. One calls this fixed design.

Lemma Suppose X is a fixed design matrix and XTX = nI (thus p ≤ n
necessarily). Define Z := XTY . Then for j = 1, . . . , p

β̂Lasso,j =


Zj/n− λ/n Zj ≥ λ
0 |Zj | ≤ λ
Zj/n+ λ/n Zj ≤ −λ

.

Proof. Write β̂Lass0 =: β̂ for short. We can write

‖Y −Xb‖22 = ‖Y ‖22 − 2bTXTY + nbT b = −2bTZ + nbT b.

Thus for each j we minimize

−2bjZj + nb2j + 2λ|bj |.
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If β̂j > 0 it must be a solution of putting the derivative of the above expression
to zero:

−Zj + nβ̂j + λ = 0,

or
β̂j = Zj/n− λ/n.

Similarly, if β̂j < 0 we must have

−Zj + nβ̂j − λ = 0.

Otherwise β̂j = 0. tu

Some notation
◦ For a vector z ∈ Rp we let ‖z‖∞ := max1≤j≤p |zj | be its `∞-norm.
◦ For a subset S ⊂ {1, . . . , p} we let Xβ∗S be the best linear approximation of
f := EY using the variables in S, i.e., Xβ∗S is the projection in Rn of f on the
linear space {

∑
j∈S X·,jbS,j : bS ∈ R|S|}.

In the next theorem we again assume orthogonal design. For general design,
one needs so-called “restricted eigenvalues”.

Theorem Consider again fixed design with XTX = nI. Let f = EY and
ε = Y − f . Fix some level α and suppose that for some λα it holds that
P (‖XT ε‖∞ > λα) ≤ α. Then for λ > λα we have with probability at least
1− α

‖Xβ̂Lasso − f‖22 ≤ min
S

{
‖Xβ∗S − f‖22︸ ︷︷ ︸

approximation
error

+ (λ+ λα)2|S|︸ ︷︷ ︸
estimation

error

}
.

Proof. Write β̂ := β̂Lasso and f = Xβ. On the set where ‖XT ε‖∞ ≤ λα we
have
- n|βj | > λ+ λα ⇒ n|β̂j − βj | ≤ λ+ λα,

- n|βj | ≤ λ+ λα ⇒ |β̂j − βj | ≤ |βj |.
So with probability at least (1− α),

‖Xβ̂Lasso − f‖22 ≤
∑

n|βj |≤λ+λα

nβ2
j + (λ+ λα)2

(
#{j : n|βj | > λ+ λα}

)

= min
S

{
‖Xβ∗S − f‖22 + (λ+ λα)2|S|

}
.

tu

Corollary Suppose that f = Xβ where β has s := #{j : βj 6= 0} non-zero
components. Then under the conditions of the above theorem, with probability
at least 1− α

‖X(β̂Lasso − β)‖22 ≤ (λ+ λα)2s.
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The above corollary tells us that the Lasso estimator adapts to favourable sit-
uations where β has many zeroes (i.e. where β is sparse).

To complete the story, we need to study a bound for λα. It turns out that for
many types of error distributions, one can take λα of order

√
log p.

Remark. The value α = 1
2 thus gives a bound for the median of ‖Xβ̂Lasso−f‖22.

In the case of Gaussian errors one may use “concentration of measure” to deduce
that ‖Xβ̂Lasso − f‖22 is “concentrated” around its median.
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