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Overview of definitions and results from probability
Countable sample space
Let Q be countable.

AD Definition 1.2 P is a probability measure on § if
(a) P(A) >0 for all A C ),

(b) P(Q) =1,

(c) if A1, Ag,... are pairwise disjoint then

oo

P(UR A) =D P(A)

i=1
( “countable additivity” or “o-additivity”).
AD Theorem 1.1 ( “monotone convergence”) Let Ay C Ay CT A. Then

nh_{go P(A,) = P(A).
Proof. Use Definition 1.2 (in particular the o-additivity). O
Inclusion/exclusion formula: P(AU B) = P(A) + P(B) — P(AN B).
AD Theorem 1.3 (“Bonferroni bound”)

P(MA4) > 1= (1= P(A)),
i=1
Proof. Use Definition 1.2. O

AD Definition 3.1 Let A C Q and B C Q with P(B) > 0. The conditional probability
of A given B is

P(ANB)
P(A|B) := ———-—
AD Theorem 3.1 (“multiplication rule”)

P(AN B) = P(A|B)P(B).

Proof. Use Definition 3.1. O

Definition Ai, As,--- form a partition of Q if they are pairwise disjoint and
UX, A = Q.

AD Theorem 3.1 (“law of total probability”) Let A1, Ag,--- be a partition of
Q with P(A;) >0 for alli. Then for any B C §2

P(B) = Y P(B|A;)P(4).
i=1
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Proof. Write P(B) = > .72, P(BN 4;). O
AD Definition 3.2 A and B are independent if

P(ANB) = P(A)P(B).

AD Definition 3.3 Ay, As,--- are independent if

(NjesAy) =[] P(4) ¥ J c{1,2,...}.

jeJ
Bayes rule:
P(B|A) = P(A|B)J;E§§, P(A) >0, P(B) > 0.
Corollary
P(B|A) _ P(A|B) P(B)
P(Bc|A)  P(A|B¢) P(B°)
——— —_——— —\—

posterior odds likelihood ratio prior odds

AD Theorem 3.3 (“Bayes’ Theorem”) Let Ay, Ag,--- be a partition of Q with
P(A;) >0 for all i, and let P(B) > 0. Then

P(BJAi) P(Ai)
> P(BIAj)P(4A;)

P(Ai|B) =

Proof. Follows from Bayes’ rule. O

Decoding example (LN Example 2.17) (using random variables notation)
Let Y € {1,...,1} be the signal sent.

Let X €{1,. J} be the signal received.

We are given P( =1i),Viand P(X =j|Y =14),Vi,j. Let (X) € {1,...,I}
be the decoder. Then

P(signal correctly decoded) = P(Y = ¢(X))

= 2P =0(j), X =)

= Y P(Y =¢(j)|X = j)P(X = j).
J

The optimal decoder ¢pt maximizes P(signal correctly decoded). It follows
that
Gopt(j) = argmax P(Y = i|X =j), j=1,....J:



P(Y = (X)) = > P =o(j)|X = j)P(X =)

< Zm?xP(Y =i|X =j)P(X =j).
J

By Bayes rule for all j

Gopt (j) = argmax P(Y = i|X = j) = argmax P(X = j|Y =4)P(Y =1).
7 (2



Discrete random variables and expectation

AD Definition 4.1 Let € be countable. A random variable X is a mapping

X: Q—R.
Then {X(w) : w € Q} is also countable. We say that X is a discrete random
variable.

AD Definition 4.2 Let X : Q — {x1,x9,...} be a discrete random variable.
The probability mass function (pmf) of X is

p(z) =P(X=2)=Pw: X(w)==1x), z€R.

We often write p =: px.
AD Definition 4.3 The cumulative distribution function (CDF) of X € R is

F(z):=P(X <z), z€R.

We often write F =: Fx.

AD Theorem 4.1 The function F is a CDF iff
(a) 0 < F(x) <1 forall z € R,

(b) limg_,_ o F(z) =0, lim, oo F(z) =1,

(c) hmxia F(x) = F(a),

(d) F is increasing.

Proof of F' CDF = (c). This follows from monotone convergence (Theorem
1.1). 0

Remark If X € {x;,z2,---} is a discrete random variable, its CDF is a step-
function (a piecewise constant function which jumps at x; with jump size p(x;),
i=1,2,...).

AD Definition 4.6 Let X and Y be two discrete random variables (defined on
Q). Then X andY are called independent if

P(X=xzY =y)=P(X =x)P(Y =y), V (z,y) € R%

AD Theorem 4.2 Let g and h be two real-valued functions on R. Then:
X and Y independent = g(X) and h(Y') independent.

Definition

The random variables X1, ..., X, are called independent identically distributed
(i.i.d.) if

-P(Xi=21,...,Xp=2y) =P(X1=21) - P(Xp, =) V (21,...,2,) €ER"
(i.e., X1,..., X, are independent)

- P(X; = ) =: F(-) is the same for all i (i.e., Xi,...,X, are identically
distributed).




AD Definition 4.17 The expectation of a discrete random variable X is

EX = Z:cp(a:) =

Linearity of expectation:
For constants a and b, we have E(aX +bY) =aEX + bEY.

AD Proposition (Change of variable) Let g : R — R be some function. Then
Eg(X) =22, 9(x)p(x).
Proof. Write Y = g(X). Then the pmf of Y is py (y) = >_,. ;(x)=, P(2). Hence

EY =) ypy(y) =) Z yp(z) =) Z px) = g(z)p(z)

Y Yy z gz Yy xz g(x)=

AD Theorem 4.3 X and Y independent = EXY = EXFEY .
Proof.

EXY =) Y ayP(X =2, =y) = ZnyP YP(Y =1)
z oy

Definition Let A C Q. The indicator function of A is

1 wed
lA(w):{O wgéA,weQ.

Proposition For X :=14 we have EX = P(A).
Proof. EX =1 x P(X =1)+0x P(X =0) = P(X = 1) = P(A). O
AD Theorem 4.4 (“partial integration”) Suppose X € {0,1,2,...}. Then

EX =) P(X >n).
n=0

Proof.

n=0 k=n+1 k=1 n=0



Variance and weak law of large numbers (LLN, discrete case)

AD Definition 4.9 Let EX := p. The variance of X is
Var(X) := E(X — p)>.

Note: E(X — u)? = EX? — 12

Proposition

(a) Var(cX) = ¢*Var(X),

(b) Var(X + ¢) = Var(X),

(c) Var(X) =0 < P(X = u) =1 (where p:= EX).

Proof. Use Definition 4.9. O

Theorem (“Jensen’s inequality”, see also Section 7.8 in AD) Let g: R — R
be convex. Then Eg(X) > g(EX).

Proof for the case X discrete. Let X € {x1,22,...} and write p; := p(x;),
i=1,2,.... Then EX = >, x;p; is a convex combination of z1, xa, ..., so by

convexity of ¢
oo

9> mip) <Y glai)pi.
i=1 i=1

Corollary EX? > (E|X|)2.
AD Definition 4.10 The k-the moment of X is EX* (k € N).
Note Jensen’s inequality = F|X|* > (E| X)), k > 1.
AD Theorem 4.5 Let X and Y be independent. Then
Var(X +Y) = Var(X) + Var(Y).

Proof. Assume without loss of generality that EX = EY = 0. Then
Var(X +Y) = BE(X +Y)? = EX? + EY? + 2EXY.

We have by Theorem 4.3 that EXY = EXEY = 0. Moreover, EX? = Var(X)
and EY? = Var(Y). O

Extension Let Xy,..., X, be independent. Then
n n
Var(d X)) = Var(X;).
i=1 i=1
Corollary Let X1,..., X, be i.i.d. with EX; =: p and Var(X1) =: 02. Write

their average as
_ 1<
Xi=— Z} X;.
1=
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Then
2

EX = pu, Var(X) = <,
n

AD Theorem 4.6 (“Chebyshev’s inequality”) Let g : R — [0,00) be an
increasing function. Then for any constant ¢ such that g(c) > 0 we have

P(X >¢) < Ej((c))().
Proof.
Eg(X) = szg(fb‘)p(aﬁ) > Z:g(w)p(x) > g(c) ;p(x) = g(c)P(X > ).
_ _ O
Corollary For all ¢ > 0
P(IX — EX|>¢) < V&‘Z(ZX)

AD Theorem 4.7 (“(Weak) Law of Large Numbers (LLN)”)
Let X1,...,Xp, - be i.i.d. with EX, =: p and Var(X1) =: o?. Write the
average of the first n as

_ 1<

Xn = — X,L

Then for all e > 0
lim P(|X,, —u| >¢€) =0.

n—0o0

Proof.

Q

P(| X, — | > €)

IN
A
a

I\



Probability and moment generating functions (discrete case)

AD Definition 5.1 Let X € {0,1,2,...}. The probability generating function
(pgf) of X is

G: s— Es¥
(provided the expectation exists). We often write G =: Gx.

AD Theorem 5.1 Assume G(s) < oo for all s in some open neighbourhood of
zero. Then for all k € {0,1, ...}

a) P(X = k) = €20

b) if limgy G®)(s) < 0o then G®) (1) = EX(X — 1)+ (X — k + 1).

AD Theorem 5.2

X1,..., Xn independent = Gy x, = [[i; Gx;.

Proof.

n n
Eszic1Xi = | H sXi = H ESXZ',
i=1 i=1

where we invoked Theorems 4.2 and 4.3. O

AD Theorem 5.3 If Gx(s) = Gy(s) for all s in an open neighbourhood of
zero, then X and Y have the same distribution.

AD Definition 5.3 Let X € R. The moment generating function (mgf) of X
18

Ut BelX
(provided the expectation exists). We often write ¥ =: Ux.

AD Theorem 5.4 Suppose ¥(t) exists for all t in an open neighbourhood U
of zero. Then

a) ¥R (0) = EX*, k€ {0,1,2,...},

b) Ux(t) =Wy (t) forallt € U = X and Y have the same distribution,

¢) X1,..., Xy independent = ¥sn x =[], Vx,.

10



Hypergeometric distribution

AD Theorem 6.6 Let X have the hypergeometric distribution:

() (=)
P(X =) = 2l n=z)
()
Then for R= Ry and Ry/N —p, 0 <p <1,

lim P(X =) = (”

N—oo

T

X

In other words, the hypergeometric distribution can then be approximated by the
binomial distribution.

Proof. Use Stirling’s formula. O

11



Distribution of sums of discrete random variables: some special cases

AD Theorem 6.12 Let X and Y be independent.

a) X ~ Bin(n,p), Y ~ Bin(m,p) = X +Y ~ Bin(n + m, p),

b) (Negative Binomial) X ~ Neg. Bin(r,p), ¥ ~ Neg. Bin(s,p) == X +Y ~
Neg. Bin(r + s, p),

¢) X ~ Poisson()), Y ~ Poisson(p) = X +Y ~ Poisson(A + p).

Proof. Either directly:

P(X+Y =2)=> P(X=z-y)PY =y),
Yy

or use moment generating functions. O

12



General sample space
Let © be some sample space and A a collection of subsets of (2.

LN Definition 3.1

1) The collection A is a o-algebra if

-Qe A,

-Ae A= ACce A,

CALAs, .. € A= UX A € A (“o-additivity”).

Then (2, A) is called a measurable space.

2) The map P: A — [0,1] is a probability measure (probability distribution) if
-P(Q)=1,

- Ay, Ay, ... € A mutually disjoint = P(U2A;) = > 2, P(A:)
(“countable subadditivity”) (compare AD Definition 1.2).

3) The triple (2, A, P) is called a probability space.

Definition Let Ay be a collection of subsets of Q). The o-algebra generated by
Ayp is
A:=0(Ag) :=n{B: B2 Ay, Bo—algebra}.

Definition Let 2 := R and B be the o-algebra generated by the collection
Ao :={(a,b] : a < b} of all intervals. Then B is called the Borel o-algebra.

Definition Let B be the Borel o-algebra and P([a,b]) :=b—a for0 <a <b < 1.
Then P is called the Lebesgue measure on [0, 1].

LN Theorem 3.1 (“monotone convergence”) Let By C By C --- T B =
UX By. Then lim,, o P(B,) = P(B) (see also AD Theorem 1.1).

Corollary Let Ay D Ay D --- L A=1n2, Ay, limy o0 P(A,) = P(A).
Note Consider (R, A, P) with A the Borel o-algebra on R. Define
F(z):= P((—o0,x]), z € R.
By the monotone convergence theorem, for all x,
lim F(x+1/n) = F(z)
n—oo
and
lim F(z —1/n) = P((—o0,z)) =: F(x—).
n—oo

We say that the CDF F is cadlag (continue a droite, limite a gauche). (Compare
AD Theorem 4.1.)

We have:

F is a CDF < F is cadlag and 1, lim, o F(x) = 0, limg_oo F(z) = 1.

13



Notation

Ay = ankEnAk
= limsup A4,

n—oo

= oo many of the A happen
= {Aj i.0.}, i.o.:= infinitely often.

Un men Bk
= liminf B,,

n—o0

= {Bjy eventually}.

Definition A, As, ... are called independent if

P(NjesA;j) HP )V J C N finite.
jedJ

(Compare AD Definition 3.3.)

Borel-Cantelli Lemma Let Ay, Ag,... € A.
1) 372 P(Ax) < 00 = P(Ax) = 0.
2) > h2 P(Ag) = 00 & Ay, Ag, ... independent = P(Ax) = 1.

Proof. Let B, := Up>,A;. Apply the monotone convergence theorem.

1)
P(Ax) = nh_)rglo P(B,) < nlgrgo 2 P(Ag) =0.

2)

P(AS) = lim P(B;) = lim [T~ P(A) = lim JTexp [log(l — p(Ak))}
k>n k>n

< nh_)Igo H exp [—P(Ak)] = nli_)rrgoexp[ ZP (Ag) ] =
k>n k>n
O

Definition (LN Section 3.1.4) Let B := o({(—00,b] : b € R?}) 2 be the Borel
o-algebra on R?, (Q, A) be a measurable space and X : Q — R?. Then X is
called measurable if {w : X(w) € B} € A for all B € B. The map X is then
called a (d-dimensional) random variable.

(=00, b] is the set of all z € R* with z; < b; for all j € {1,...,d}.

14



Continuous random variables in R

AD Definition 7.2 The cumulative distribution function (CDF) of a random
variable X € R is

F(z):=P(X <z), z€R.
(Compare AD Definition 4.3.)
AD Definition 7.3 X € R and Y € R are independent if

P(X <z,Y <y)=P(X <z)P(Y <y) ¥(z,y) € R%

AD Definition 7.2 continued The random variable X is called continuous if
its CDF F is continuous.

AD Definition 7.1 The random variable X admits a (probability) density function (pdf)
f() if its CDF F(-) can be written as

F(x):/_x ft)dt vV x.

Then X (or F) is called absolutely continuous.

Note At locations x where f(-) is continuous

fla) = ().

Note The function f is a density iff
- f Z 07
- ffooo f(x)dx = 1.

AD Definition 7.5 The p-th quantile of a CDF F 1is
Fl(p) i=inf{e s F(z) > p}.

Then F~Y(1/2) is a median.

AD Theorem 7.1

a) Let p € R and o > 0. If f(-) is a density then so is

f(z|p, o) = if<x—,u>? z €R.

2

Then {f(:|p,0) : peR, o >0} is a location/scale family.
b) Let fi,..., fr be densities and let p; > 0, i = 1,...,k, and Zlepi = 1.
Then Zle pifi is a density, a so-called mizture density.

AD Definition 7.6 The density f is symmetric around M if f(M + z) =
f(M —x) Y x. Important special case: M = 0. Then f(x) = f(—z) and
Fz)=1-F(—x)V z.

AD Definition 7.7 The density f is unimodal with mazimum at M if f(zx) T
forx < M and f(z) | for x> M.

15



Functions of an (absolutely) continuous random variable in R

AD Theorem 7.2 (“Jacobian”) Let X € R and g be a real-valued strictly
monotone and differentiable function, defined on some open interval S such
that P(X € S) =1. Then Y := g(X) has density

_ Ix(e™' W)
19'(97 ()]

(Here 1/¢' (97 (y)) = dg~*(y)/dy is called the “Jacobian” .)
Proof. Say g T. Then

fr () , 9 ' (y) €S

Fy(y) = P(9(X) <y) = P(X < g7'(y)) = Fx (9~ (v)-
Differentiate to find the density of Y. O

Remark Also for g possibly not monotone, it is often feasible to first find the
distribution function Fy of Y := ¢(X) and then differentiate to obtain the
density fy.

Definition Let U ~ Uniform[0, 1] and let F be a CDF. Then F~1(U) is called
the quantile transformation of U.

AD Theorem 7.4 Let U ~ Uniform[0,1]. Then X := F~*(U) has CDF F.
Proof. From AD Definition 7.5: F~!(u) = inf{x : F(z) > u}. Now check that

P(X <z)=P(U < F(z)) = F(z).

16



Expectation of (absolutely) continuous random variables

Note If integral limits are not specified it means the integral is over R.

AD Definition 7.9 If X has pdf f and [ |z|f(x)dx < co then the expectation
of X is

EX = / of(z)dz.

Remark For arbitrary random variables: if X has CDF F and [ |z|dF(z) < oo
then EX = [zF(x).

Linearity of expectation:
For constants a and b, we have E(aX +bY) = aEX + DEY.

AD Theorem 7.5 (“change of variable”) Let g : R — R (measurable). If
[g(@)|f(z)dzx < oo then Eg(X) = [ g(z)f(x)dz.

Sketch of proof. Suppose g is strictly increasing and let Y = g(X). Then
invoking AD Theorem 7.2

-1
EY = /ny(y)dy = /ymdy
= /yfx(gl(y))dgl(y) = /g(x)fx(;c)dx_

O

AD Definition 7.10 The k-th moment of X is EX* (k € N). (This is as
AD Definition 4.10, but now for the continuous case.) The variance of X is
Var(X) = E(X — EX)? (as in AD Definition 4.9 but now for the continuous
case).

Note: E(X — u)? = EX? — 1? (as in the discrete case).

Proposition (as in the discrete case)

(a) Var(cX) = c*Var(X),

(b) Var(X + ¢) = Var(X),

(c) Var(X) =0 < P(X = p) =1 (where p:= EX).

AD Theorem 7.7 (“partial integration”) (a continuous version of AD Theorem

4.4) Suppose X > 0 and EX exists. Then

EX = /000(1 — F(z))dz.

Sketch of proof. Suppose X has density f = F’. Then by partial integration

EX = /000 xf(x)dx = /000 zdF(x) = _/000 xd(1 — F(x))

17



=—z(l - F(x))]52, + /000(1 — F(x))dx.
But (1 — F(x))|z=0 = 0 and
0<z(l-F(x))< /Oouf(u)du — 0, z — o0,

since EX < oo.

18



Moment generating functions (discrete or continuous case)

AD Definition 7.14 Let X € R. The moment generating function (mgf) of
X is

U ot Bt
(provided the expectation exists). We often write ¥ =: Wy .

Theorem (as for the discrete case in AD Theorem 5.4) Suppose ¥(t) exists for
all t in an open neighbourhood U of zero. Then

a) ¥R(0) = EX*, k€ {0,1,2,...},

b) Ux(t) =Wy (t) forallt € U = X and Y have the same distribution,

c) Xi1,..., X, independent = Usn = [T, ¥x,.

Note Let Y := i+ 0 X. Then Uy (t) = etV x (at).

Example
Let X ~ N(0,1). Then Wx(t) = exp[t?/2].
Let Y ~ N (u,0?). Then Wy (t) = explut + o?t2/2].

19



Jensen’s inequality, Chebyshev’s inequality, weak LLN, revisited

Theorem (“Jensen’s inequality”) Let g : R — R be conver. Then Eg(X) >
9(EX).

Proof For all constants a and all z it holds that g(x) > g(a) + m(a)(x — a)
where m(a) is the slope of the line I(x) := g(a) + m(a)(z — a) passing through
(a,g(a)) that is below g. So we have

Eg(X) = g(a) + m(a)(EX —a).
Now take a = EX. O
Corollary EX? > (E|X|)?.

Note Jensen’s inequality = F|X|* > (E| X)), k > 1.

Theorem Let X and Y be independent. Then
Then

a) EXY = EXEY

b) Var(X +Y) = Var(X) + Var(Y).

Proof. The proof of a) is given in the lemma following AD Definition 12.3.
The proof of b) then follows as in the discrete case (AD Theorem 4.5). O

Extension Let Xi,...,X,, be independent. Then
n n
Var(d X;) = Var(X;).
i=1 i=1
Corollary Let X1,..., X, be i.i.d. with EX; =: u and Var(X1) =: 02. Write

their average as
_ 1 &
X:== z; X;.
1=

Then
2

EX = pu, Var(X) = 7,
n

Theorem (“Chebyshev’s inequality”) (as AD Theorem 4.6 for the continuous
case) Let g : R — [0,00) be an increasing function. Then for any constant ¢
such that g(c) > 0 we have

Proof for the absolutely continuous case. It boils down to replacing in
the proof of Theorem 4.6 the sums by integrals and the pmf p by the pdf f:

£o(X) = [ s()1(e) > |

x>c

9(2)f(z) > gle) / _f@) = gloP(X 2 o),

20



Corollary For all ¢ > 0

< Var(X).

P(X — EX| > ¢)

c2

Theorem (“(Weak) Law of Large Numbers (LLN)”) (as AD Theorem 4.7 for
the discrete case, now stated for the general case)
Let X1,...,Xp, -+ be i.i.d. with EX1 =: p and Var(X1) =: 0. Write the
average of the first n as
_ 1 —
X =~ 2 X;.
1=

Then for all e > 0 B
lim P(|X,, — u| >¢€) =0.

n—o0

21



Distribution of sums of continuous random variables: some special cases

Theorem Let X1,...,X,, be i.d.d. copies of a random variable X.
a) X ~ Exponential(\), = > | X; ~ Gamma(n, \),

b) X ~ N(M702)7 = ZZ’L:I X~ N(n:u’ n02);

¢) X ~N(u,0%) = S X2~ x? with n degrees of freedom.

22



Limit theorems

Definition (Section 4.2 of LN) A sequence of real-valued random variables Zy,
converges in probability to Z (notation: Z, —* Z) if for all ¢ > 0

lim P(|Z, — Z| > €) =0.

n—oo

It converges almost surely to Z (notation: Z, —*% Z) if

P(lim Z,=2)=1.

n—oo

LN Lemma 4.1

) Zp, =% 7 = Z, =t Z.

i) >, P(|Zn—Z| >€) <oV e>0= Z, =% Z.

Proof. Let A, := {|Z, — Z| > €}.

i) w € Ay implies Z,(w) does not converge to Z(w). Therefore P(A) = 0.
But, invoking monotone convergence,

P(As) = lim P(UpspAg) > lim P(A,).

n—o0 n—o0

ii) By the Borel-Cantelli Lemma P(Ay) = 0. But then

L= P(4S,) = P(lim |2~ 2| < o).

LN Lemma 4.2 (“Strong Law of Large Numbers (LLN)”) Let X1,..., X,,...
be i.i.d. with EXy =: p and Var(X;) =: 0% < co. Denote the average of the
first n by X,, :=>"7" | X;/n. Then

Proof. By Chebyshev’s inequality, for all € > 0

— 0'2
P X, —pl>e) £ —.
(1% =1l > ) < 2

Hence )

_ o
By the Borel-Cantelli Lemma this gives

X, 2 =™ p.

Define the sum S, := > ;" | X;.
o Suppose first X; > 0 (almost surely V 7). Then for n? < k < (n + 1)2

a.s.

Sk S Sp2 S Sz n? y

T2k 2t
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and

& < S(n+1)2 < S(”+1)2 (TL + 1)2 _ya.s.

k= k ~— (n+1)2 n?
o For general X; write X; = X;r — X, where X;r = max{X;,0} and X :=
max{—X;,0}. O

AD Theorem 10.3 (“de Moivre-Laplace Local Limit Theorem”) Let X ~
Binomial(n, p) where 0 < p < 1 is fized. Then for any fixed constant C' and any
k€{0,...,n} such that |p —k/n| < C it holds that

k—p

P(X = k) ~ 1¢<

g

) (0 ),

o
where p := np(= EX), and 0 := np(1 — p)(= Var(X)). Moreover, ¢ is the
N(0,1)-density.

Sketch of Proof. Use Stirling’s formula and the two-term Taylor expansion
log(l1+x)~2—22/22—0. O

AD Theorem 10.2 (“de Moivre-Laplace Central Limit Theorem (CLT)”) Let
X ~ Binomial(n,p) where 0 < p <1 is fized. Then for all x € {1,...,n}

g

P(X <)~ q><$_“) (n — o0),
where p = np(= EX), and o® := np(1 — p)(= Var(X)). Moreover, ® is the
N (0, 1)-distribution function.
Sketch of Proof. See AD Theorem 10.1. O
Remark The continuity correction is that instead of taking for « € {0,1,...,n}

P(ng)N‘I)(x_M)

g

one uses

P(XSx)zP(X§X+.5)~<I><x+'5_M>.

o

AD Theorem 10.1(“Central Limit Theorem (CLT)”) Let X1,..., Xy, ... be
i.i.d. with EX1 =: p and Var(X1) =: 0% < co. Then with X, ==Y | Xi/n

lim P(m < t> = &(1), Vt,

n—o0 o

where ® is the N(0,1)-distribution function.

Sketch of Proof. We consider the case where Ux, (¢) exists for all ¢ in an
open neighbourhood of zero. We will only show convergence of the moment
generating function. The result then follows from a “continuity theorem for
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mgf’s” (not shown). Without loss of generality we may assume p = 0 and
02 = 1. Then

2

V() ~ IO+ 0) =+ B 0) o

=1 =p=0 =EX?=02=1
2
= 1+ o
Moreover
U mx, (1) = Uk, (t/vn)

so that

log¥ 5. (t) =nlog W, (t/vn) ~ nlog(l+ t2/(2n)) ~ t%/2.

It follows that ¥ ¢ (t) — exp[t?/2] which is the mgf of a A(0, 1)-variable. O
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Multivariate discrete distributions

Let X : Q — {z1,29,...} and Y : Q — {y1,¥2,...} be two discrete random
variables.

AD Definition 11.1/11.2 The joint probability mass function (pmf) of (X,Y)
18

p(z,y) = P(X =2,Y =y), (z,y) € R*.
The joint cumulative distribution function (CDF) is

F(z,y):=P(X <z,Y <y), (z,y) € R%.

AD Definition 11.3 The marginal pmf of X is
=> p,y), v€R.
Yy

The marginal pmf of Y 1is

py(y) =) plx.y), y R

For a function g : R? = R and for Z := g(X,Y) the pmf of Z is

pz(z) = Z p(z,y), z € R.
(zy): g(zy)==

AD Theorem 11.1 (“change of variable”) For a function g : R? — R,

- Zg(xa y)p(x, y)'

Proof. Let Z = g(X,Y). Then

EZ = Zzpz(z) = ZZ Z p(x,y)

z (zy): g(zy)=2

_Z Z z (m,y)zzg(%y)P(%y)'
zY

z (x,y): g(z,y)=2

O
AD Definition 11.4 For py(y) > 0 the conditional distribution of X given
Y =y is
p(z,y)
p(zly) == P(X =zlY =y) =
py (y)
The conditional expectation of X given Y =y is
E(X|Y =y) pr zly) =: h(y),
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and we write E(X|Y) := h(Y).
AD Proposition 11.1 We have

E<Xg(Y)’Y> = g(V)E(X|Y).

Proof.

E(Xg( ‘ > ng (zly) = g(y chp zly).

AD Theorem 11.3 (“iterated expectations”)

E(E(XY)> — EX.
Proof. Let h(y) := E(X|Y =y). Then

Zh Y)py (y Z[pr x|y]py
— Zpr(:ﬂ,y) = prx(x)
T Y T

Definition
2 ~
Var(X[Y = y) = E(X?Y = y) - (E<X|Y _ y>) ()
and

Var(X|Y) := h(Y).

AD Theorem 11.4 (“iterated variance”)

Var(X) = EVar(X|Y) + Var(E(X|Y)).

vV
“within” “between”

Proof. We have
Var(X|Y) = B(X?|Y) — (B(X|Y))?%,
so by iterated expectations

EVar(X|Y) = EX? — E(E(X|Y))2
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Moreover, using iterated expectations once more

2
Var(B(X[Y) = BECXY)? - (BEXIY) = BEEIV) - (B2

AD Example 11.18
a) Best constant predictor:

argmin E(Y — ¢)? = EY.
ceR

b) Best predictor given X = x:

inE( (Y —¢)?
arg min <( c)

X = x> = E(Y|X = 2).

Hence

min B(Y — d(X))*=E(Y — E(Y|X))? = EVar(Y|X).

c) Best linear predictor

. 2. [«
arg (aJI)I)l%IGlRQ EY — (a+bX))* := (5) ,

where
EXY — EXFEY

Var(X)

a=FEY - BEX, 8=

AD Definition 11.7 The covariance between X and Y is

Cov(X,Y) = EXY — EXEY.

AD Example 11.18 c) continued.

5= Cov(i(, Y)
Ox
2
B(Y - (a4 8X))? = 03 — LV 5Y),

ox
AD Theorem 11.6
a) Cov(X,Y)=E(X — EX)(Y — EY).
b) Cov(X,X) = Var(X).
¢) Cov(aX +bY,cX +dY) = acVar(X) + (ad + bc)Cov(X,Y) + bdVar(Y),

and . .
Var() " X;) = Var(X;) + Y Cov(X;, X;).
i=1 i=1 i#j
d) X andY independent = Cov(X,Y) = 0.
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Proof of c¢). Assume without loss of generality that EX = EY =

EX; =0 for all . Then
Cov(aX +bY,cX +dY) = E(aX +bY)(cX +dY)

and
n

Var() © X; ZX

=1

Now remove the brackets and use linearity of expectation. O
Proof of d). See Theorem AD 4.4. O
AD Definition 11.8 The correlation between X andY is

Cov(X,Y)
Var(X)Var(Y)

PXY ‘=

0 and

AD Theorem 11.6 It holds that |pxy| < 1 and |pxy| =1 Y = a+ X

(3 (a, 8)).
Proof. Use AD Example 11.8 ¢) continued. O
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Multivariate continuous distributions

AD Definition 12.1 (X,Y) € R? has density f(x,y), (z,y) € R?, if for all
—o<a<b<ooand —o0 < c<d< oo it holds that

d b
Pasx<b esv<d=[ [ fpdy

AD Definition 12.2 If (X,Y) admits density f, the cumulative distribution
function (CDF) of (X,Y) is

y x
Faw)= [ [ fstisit, .)€ B
and we have (for almost all (x,y))

62
0xdy

flz,y) = F(z,y).

The (marginal) density of X is then

fx(x) = /f(x,y)dy, xr € R,
and the (marginal) density of Y is

frlo) = [ fag)do, yer.

AD Proposition X andY independent iff F(z,y) = Fx(z)Fy (y) for all (x,y)
iff f(x,y) = fx(x)fy(y) for (almost) all (z,y).

AD Definition 12.3

Eg(X,Y) = / oz, 9) f(z,y)ddy.

Lemma X and Y independent = EXY = EXFEY.

Proof. This follows by replacing in the proof for the discrete case (AD Theorem
4.3) the sums by integrals and the pmf’s by pdf’s:

EXY = /y / 2y f (e, y)dudy = /y / 2y fx () fy (y)dady

- / sfx(@)ds [ yfy )y = EXEY.

Y
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Definition of the bivariate normal distribution Let Ui and Us be inde-
pendent and both N(0,1)-distributed. Write

_ (U _
U.— <U2>7 X_AU_'_/“L?

where u € R? is a given vector and A € R?>*? is a given non-singular ma-
triz. Then X has a two-dimensional normal distribution with parameters (i, %)

where ¥, = AAT .

Note The Jacobian (see AD Theorem 13.3) of u + z = Au+ uis A~! and we
have |det(A~1)| = 1/4/det(X), ¥ = AAT. In the above definition

ol = g explul/2 u = (2)

where [[ul|? = u} + u3 = ulu. It follows (see AD Theorem 13.3) that

1
 2ry/det:

Moreover, we have FX = p and for

O'% 012
%= 2,
0—1’2 02

it holds that Var(X;) = 0%, Var(X3) = o3 and Cov(X1, X3) = 01 2.

fx(@) expl— (@ — )5z — )], @ = () .

Remark The definition of the d-dimensional normal distribution is: X = AU +
p with U = (Uy,...,Ug)T, Uy, ..., Ugiid. N(0,1), p € R? and A € R¥¥¢,

Theorem X ~ N (p,Y) = BX ~ N(Bpu, BLBT).
Proof. Follows from the definition of the bivariate (or multivariate) normal. O

Theorem Let X = (X1, X2)T ~ N (1, %). Then:
X1 and Xy independent < Cov (X1, X3) = 0.

2
_(oi O
2(0 )

fx(z) = fx,(@1) fx,(22) ¥V 2 € R?.

Proof of («). Since

we see that

O

AD Example 12.16 Let X; and X2 be independent and X; ~ N(u1,02),
X2 ~ ./\/’(,ug, 0‘2). Define Z1 = X1+X2 and Z2 = Xl—Xg. Then 7 := (Zl, ZQ)T
is bivariate normal and Cov(Z;, Z2) = 0 so that Z; and Z3 are independent.

AD Theorem 12.4 Let X1, ..., X, be i.i.d. N(u, a?). Define the sample mean
X =", X;/n and the sample variance S* := Y1 | (X; — X)*/(n—1). Then
X and S? are independent.
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Proof for n = 2. It follows from AD Theorem 12.4:

_ X1+ X X1 — X5)2
X — 1+ 2’52:(1 2).
2 2
O

AD Definition 12.6 Let(X,Y) have pdf f(z,y), (x,y) € R% For fy(y) > 0
the conditional density of X given'Y =y is

Tly):= fy (y)

The conditional expectation of X givenY =y is

B(XIY =y) = [ of(aly)de = ()

and
E(X|Y):=h(Y).

The conditional variance of X given'Y =1y is

2
Var (XY =) = BCY =) - (BXIY =) =iy

and

Var(X|Y) := h(Y).

Many results for the discrete case carry over to the continuous case and defini-
tions can be re-used. In particular:

o Iterated expectations: EE(X|Y) = EX.

o Iterated variance: Var(X) = EVar(X|Y) + Var(E(X]Y)).

o Best constant predictor: arg min.cg E(Y — ¢)? = EY.

o Best predictor given X: ming. p_g E(Y —d(X))? = E(Y — E(Y|X))2.

o Best linear predictor argmin, yrepe E(Y — (a + bX))? := (o, B)7, where
a=EY — BEX, B = Cov(X,Y)/Var(X).

o The covariance between X and Y is Cov(X,Y) = EXY — EXFEY.

o Cov(X,Y)=FE(X —-EX)(Y — EY).

o Cov(X, X) = Var(X).

o Cov(aX +bY,cX +dY) = acVar(X) + (ad + bc)Cov(X,Y) 4+ bdVar(Y),

o Var(3 il Xi) = 3oL Var(Xi) + 37, Cov(Xi, Xj).

o X and Y independent = Cov(X,Y) = 0.

o The correlation between X and Y is pxy := Cov(X,Y)/+/Var(X)Var(Y).
olpxy|<land [pxy|=1&Y =a+BX (3 («,8)).

o Bayes formula: let f(y|z) be the conditional density of Y given X = z. Then

= _ f(=ly) fr (y)
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Remark In the statistics part we use a different notation. We let Y := 6,
y =9, fy(y) = w(¥) and p(x|¥) be the conditional pmf or pdf of X given
0 =9 and we write

pz|9)w()

p()

where p(z) = [ p(x]9)w(?)dd. In that context § can also be a discrete random
variable. Then w(¥) is the pmf of 6 and p(z) = >, p(z|?)w(V).

Example Let Y and Z be independent, Y ~ A(v,72) and Z ~ N(0,0?).
Define X :=Y + Z. Then X ~ N (v,72 + 02) and X|Y ~ N (Y, c?). Moreover

w(¥|z) =

Y’XNN,<X7'2—1—1/U2 7252 >

T2+O'2 ’7-2_|_O-2
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Convolutions and transformations

AD Theorem 13.1 Let (X,Y) € R? have density f(z,y) , (z,y) € R? and let
Z:=X+Y. Then

fZ(Z):/f(Zy,y)dy, z € R.

In particular, if X and Y are independent

f2(2) = / fx(z = u) fr()dy, = €R.

Definition Let X1, ..., X, be i.i.d. with density f. The density of X1+---+ X,
is called the (n-fold) convolution of f.

AD Theorem 13.3 Let X = (X1,...,X,)T have density f(x), x € R and
let S C R™ be some open set such that P(X € S) = 1. Consider a function
g: S —R" and define U := g(X). Assume
a)g: S—g(S)=T is 1-1,
b) h:= g~ is continuously differentiable,
c) det(J(u)) # 0 where J(u) := Oh(u)/0u is the Jacobian (u € S).
Then
fo(u) = |det(J(w))[fx (h(u)), weT.
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Standard distributions
Standard discrete distributions
1. Bernoulli distribution with success parameter p € (0,1). X € {0,1} and
P(X=1)=p, EX=p, Var(X)=p(l-p).
2. Binomial distribution with n trials and success parameter p € (0, 1).
X e€{0,1,...,n}

n

P(X =k)= (k) PFL—p)F k=0,1,...n,
EX =np, Var(X)=np(l—p).
3. Poisson distribution with parameter A > 0. X € {0,1,...}

A
P(X=k)=Sre? k=01,

EX =), Var(X)=A\

35



Standard continuous distributions

4. Gaussian distribution with mean p and variance o?. X € R,

2
fx(ac)::\/;r7 exp[—i(xgu>], r €R.

Denoted by X ~ N (u,c?).

EX = pu, var(X) = o2

X —p
g

X ~N(p,o0?) & Z:= ~ N(0,1).

N(0,1) is called the standard normal (or Gaussian).

5. The standard normal distribution function.

1 x
O(x) = Nor / e # 2 dz, zeR

Let ®~! be its inverse function. Then,

®710.9) =1.28, ®1(0.95) =1.64, @ 1(0.975) = 1.96.

6. Exponential distribution with parameter A > 0. X € R := [0, c0),
1 —xz/\
fx(z) = 1€ , = >0.

EX =)\, Var(X) =\
Note: in many textbooks A is replaced by 1/\.

7. Gamma distribution with parameters o, \. X € Ry := [0, 00),

1 a—1 _—z/\
> 0.
fx(x) T (@) e , >0

Here I'(«) is the Gamma function and for integer values I'(m) = (m —1)!.
EX =a), Var(X)=a).
Note: in many textbooks A is replaced by 1/\.

8. Beta distribution with parameters r,s. X € [0, 1],

fx(x) = 11:((::);(3 (A —2) zelo, ).
EX = r+s’ Var(X) = (r+s)21+r+s)
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9.

10.

11.

Chi-Square (x?) distribution.

The x? distribution with m degrees of freedom is the Gamma distribution

with parameters (m/2,1/2). Denoted by x?(m). In particular,

X ~N(0,1) = X?~x*1),

X;~N(0,1), j=1,.,m, iid = Y X2~ xP(m),

j=1
Student distribution.
If Z~N(0,1),Y ~x%(m), Z LY, then,
A

VY/m'

has a student distribution with m degrees of freedom.

Its density is given by

—(m+1)/2
oty = LU+ 172 (”Z)

T T(m/2) , teR.

Studentizing. Let {X;}j_; be i.id.  with N(u,0?) distribution.

X, =1, X;/n and set

1 _
S2 .= — > (X - X)%
=1

Then, X,, and S? are independent and

Vvn [Yn - N]
Sn

has a Student distribution with n — 1 degrees of freedom.
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Probability and Statistics 401-2604

Overview of definitions and results from statistics
Introduction

In most of the theory the data (observations) are ii.d. real-valued random
variables X1,..., X,. We call n the sample size. We then say that Xi,..., X,
are i.i.d. copies of a random variable X.

We often denote shorthand the data by X € X as well (abuse of notation). The
space X is the observation space (typically (a subset of) Euclidean space).

A statistical model says that X ~ P € {Py: 6 € ©}. The set O is called the
parameter space. Typically © is (some subset of) Euclidean space.

A parameter of interest is a function g(0) = Q(Py) =: 7.

Definition (LN Section 6.1) An estimator T' of a parameter of interest g(0) €
R is a (measurable) map T : X — R.

Remark An estimator is also often called a statistic. A statistic 7' is a mea-
surable map T : X — R.

Remark Often we denote estimators with a “hat”, e.g. 4 as estimator of ~.

Notation If X has distribution Py its expectation depends on §. We (often)
write the expectation with a subscript: Fyg(X).

Remark If the data are (Xi,..., X)) an estimator 7" is thus some function of
X1y, Xn.

Remark We often write EyT(X) =: EgT (or EgT(X1,...,X,) =: EgT).

Definition (LN Section 6.2) The Mean Square Error (MSE) of an estimator
T of g(0) € R is

MSEy(T) = Ey(T — g(6))>.

The bias of T is
biasy(T') = EgT — g(0).

The estimator T is called unbiased if
biasp(1) =0, V 0 € ©.
The standard error of T is

O'@(T) =\ Varg(T).

Lemma
MSEy(T) = biasj(T) + Vary(T).
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Proof. Write ¢(0) := Ep(T'). Then

2
MSEy(T) = Ey (T —q(0) +q(0) - 9(9)>

-7~ q<e>)2 + (a0 g<0>)2 +2(a0)-90) Ba (T~ a0))
= Varg(T) + biasj(T). R
O

Example Let X;,...,X,, be ii.d. copies of X € R where FX =: u and
Var(X) =: 0%, Then the sample average X = > I | X;/n is an unbiased esti-
mator of ;1 and the sample variance 52 := > | (X;—X)?/(n—1) is an unbiased
estimator of o2. However, S is not an unbiased estimator of o.

LLN as source of inspiration Let X1,..., X, bei.i.d. copies of X € R where
EX =: p and Var(X) =: ¢2. Then by the LLN X = yu for n large. Thus it
makes sense to estimate p by X. Similarly, for a given some function g, inspired
by the LLN an estimator of Eg(X) is > .1 ; g(X;)/n and for a given function h
an estimator of h(u) is h(X), etc. For example 02 = EX? — 12 by definition,
so the LLN leads to the estimator

1 .
5% ==Y X} - (X)?
n
=1

of 02, Note that 62 = 237 (X; — X)? = =182 For large n, the two
estimators 62 and S? are close. Again, inspired by the LLN, an estimator of
the CDF F(z) = P(X <z),z€Ris

R 1 —
1=1

The function F), is called the empirical distribution function.
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Bayesian statistics (see e.g. JR)

Data: X € X, where X is some measurable space (usually RY).

Model: X has distribution Py, 8 € ©.

Frequentist statistics assumes the unknown to be 6 fixed (nonrandom).
Bayesian statistics assumes 6 to be random.

Let p(x|6) be the pmf/pdf of X ~ Py, 6 € © (assumed to exist).

Suppose © is measurable space an let II be a given probability distribution on

O.

Definition For a dominating measure p the prior density of 0 is

_dn

w(¥) : 0

(), ¥ € ©.

Remark

o If © is countable we let w(-) be the pmf of 6.

o If ® = R and if II is absolutely continuous, we let w(-) be the pdf of 6.

o In both discrete and absolutely continuous case we call w(-) a density. Other
cases will not be considered in this course.

Definition The marginal pmf/pdf of X is

Yogp(@|Pw(¥) 6 discrete

, zEX.
Jyp(z])w(¥)dd 6 abs. continuous !

p(z) = /p(mw)w(q?)du(ﬁ) :{

For p(x) > 0 the posterior density of 0 given X = x is

w(dle) = PEDw)
() plz)

(Compare with AD Theorem 3.4 and AD Definition 12.6: Bayes rule.)

Remark
The posterior density w(:|x) can be a pmf or pdf, other cases will not be con-
sidered in this course.

Definition The Mazximum a Posteriori (MAP) estimator is

Oniap = éMAp(X) := arg max w (9| X),
JEO

provided the mazimum ezists.

Note To find fyap you do not need to calculate the marginal distribution p(-):

Omap = arg %leaé(p(XW)UJ(ﬂ).
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Note We may also write
Oniap = arg g1ag{logp(X|19) + log w(¥) }
€

Classification Example Consider two given pmf’s/pdf’s po(z) and pi(z), x €
X. Given an observation X, we want to classify it as coming from distribution
Py (with pmf/pdf pg) or P; (with pmf/pdf p;). Let the prior be

w1 v=1

for given 0 < wg < 1 and wy; = 1 — wg. Then the MAP estimator is

p1(X)  wo

R 1 pogﬁg > wy
—_ P1 — Wo
Oniap = Y pog§g =
p1 wo

0 20X < w

where v € {0,1} is arbitrary (compare with LN Example 2.17: optimal decod-
ing). Here, use that

w(d|z) = po(x)wy, 9=0 '
pi(x)wy, 9=1

Note that
p(z) = wopo(z) +wipi(z), v € X,

is a mixture of pg and p1. The estimator @M AP is often also called Bayes decision.
Indeed, we can reformulate situation in terms of decision theory. There are two
possible actions a = 0 (classify as coming from pp) and a = 1 (classify as coming
from p;). The action space is thus A := {0, 1}. We define the loss function

L(Q?,a) = 1{ﬁ7£a}7 (19, (1) €0 x A

This means one unit loss for making a wrong decision. We call for a decision
¢ X — Aits risk

R(9,¢) := EyL(¥, ¢(X)) = E[L(J, (X))|0 = 9.
Thus

{Po@»(X):l), 9 =0
Pi(¢(X)=0), 9=1"

We then define the Bayes risk of ¢ as the average risk with 8 having density w:

Tw(®) := ER(6, ¢).

Thus

Tw(¢) = woPo(p(X) = 1) + wi Pi(¢(X) = 0) = P(p(X) #0).
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Bayes decision is defined as the minimizer of the Bayes risk

¢Bayes = arg & )?111{10,1} rw(¢)'

One may verify that ¢payes = OniAp (in this classification problem).

Decision theory (general setup)
Given an action space A and a loss function L : © x A — R the risk of a
decision d : X — A, is

R(9,d) i= EyL(d,d(X)) = E[L(d,d(X))|0 = v].
With a prior density w on © the Bayes risk is of d is

Yoo R0, d(X)w(), 6 discrete

rw(d) := ER(0,d) = )
Jy R(9, d(X)w(9)dd), 6 abs. continuous

Bayes decision is
d = arg min 7,(d).
Bayes gd: XA w( )

Remark In the above setup we did not explicitly state the needed measurability
conditions.

Note For example, when both X and  are discrete
ro(d) = %:R(ﬁ,d)w(ﬁ

= Z E[L(9, d(X))|0 = 9w(¥)

= ZZL (0, d(z))p(z]9)w(9)

= ZZL (@, d(z))w(V|z)p(z)

= ZZL (0, d(z))w(9|z)p(z)

= ZE )| X = z]p(x)

Iterated expectations We have

ro(d) = EE[L(0,d(X)|0] = EL(0, d(X)) = EE[L(6, d(X)|X].

This is the short hand version of what was written out above for the case both
X and 0 discrete.

Lemma We have

dBayes(X) = arg mi}‘\l E[L(@, a) |X]
ac
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Proof.

ro(d) = EL(0,d(X)) = EE[L(6,d(X)|X] > E(]ggﬂ E[L(G,a)]X]).

Classification example revisited It holds that

po(w)wo

p(x)

po(@)wo — p1(x)wr | pi(z)w
p(z) p(x)
The last term does not depend on a so we can omit it when carrying out the
minimization. Then for any v € {0, 1},

E[L(#,a)|X =z]=a

+(1-

p1(z)wr > po(x)wo
p1(x)wi = po(x)wy -
p1(r)wr < po(x)wo

arg min apo(x)wo—pl(ﬂf)m _

ac{0,1} p(x)

S D2 =
—
8
S~—

Bayes estimator for quadratic loss
Let © C R, A=R and L(9,a) := (9 — a)?. Then

R(9,d) = E[(d(X) — 9)%|0 = 9] = MSEy(d).
Bayes estimator is

dBayes(X) = arg min E[(0 — a)?|X] = E(0|X)

a€R
(compare with AD Example 11.18: best predictor given X).

Example: Bayesian inference for the binomial distribution
Let X6 ~ Binomial(n, ) and 6 ~ Beta(r, s). Then the prior mean is £f = 1.
The posterior density is

w(V|x) o< plz|)w (V) o< 9*(1 —9)" 951 (1 —9)" !
— 79x+371(1 o ﬁ)nforrfl.

So 0| X =z ~ Beta(z + r,n — x — s) and Bayes estimator for quadratic loss is

X
BOX)= — "
n+r+s
The MAP estimator is
o X +r—1
MR s+r—2

Example: Bayesian inference for the normal distribution
Let X |0 ~ N(0,0%) were 6 € R and where ¢ is known. Suppose 6 ~ N (0, 72).
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Then we have seen (see the example at the end of the section “Multivariate
continuous distributions”)

2 2 2
9[X~/\/< T x, 7 )

7—2_|_0-2 ’7-2_|_0-2

Thus Bayes estimator for quadratic loss is
2

E0X)=cX, c:= ———.
(‘ ) cA, C T2+O'2

In this case this is also the MAP estimator.
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Method of moments

Let X € R and let the data Xy,..., X, be i.i.d. copies of X.

Definition (as AD Definition 4.10 and 7.10) For k € N the k-th moment of X
18
M = EXk

(if the expectation ezists).

Definition The k-th sample moment is

15
fbge :z;ZXf, ke N.
k=1

Note By the LLN /i ~ uy for n large (provided the moment exists).
Let X ~ Py, where # € ©® C RP. Then the moments of X also depend on 6:

pr = i (0) = EgX.

LLN as source of inspiration ~»

Definition The methods of moments estimator 0 is a solution of

uk(ﬁ)ﬁ:é =g, k=1,...,p.
(assuming a solution ezists).

Example A Suppose X ~ Poisson(A), A > 0. Then EX = A so the methods
of moments estimator is A = X. It holds that EA = X for all A > 0 so \ is

~

unbiased. Moreover var(A) = A/n and we can estimate the variance by

~

Var(\) := A/n.
By the CLT, ) is approximately N'(\, A/n)-distributed for n large. Thus
P(\X - Al < z\//\/n> ~P(z) — P(—z) =2P(2) — 1.

We have ©(1.96) = .975. Therefore

A (1.96)y/A/n = X + (1.96) /X /n

~2

is approximately a 95% confidence interval for \:

P <)\ € [X - (1.96)\/5\/7,;\ + (1.96)M]> ~ .95.
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See also AD Example 10.19, where 1.96 was replaced by 2 for simplicity and
the approximate 95 % confidence interval was

_ 2 X+1
K42 g /Xt
n n

The two approximate confidence intervals are for n large approximately equal
(the second one is slightly more conservative).

Subexample
x; | # days
0 100
1 60
2 32
3 8
>4 0

Here n = 200, £ = .74. Then an approximate 95% confidence interval for \ is
T £ 2+/x/n =1[0.62,0.84].

Let 7 := g(\) := Py(X > 4) be the parameter of interest. Then

5 =g(\) = g(\) = .00697,

and an approximate 95% confidence interval for v is
g(i‘ +2 j/n) = [0.0038,0.01]

(since A — g(A) is a monotone function).

v — 7 | (x; — )% | # days
-.74 .b476 100
.26 .0676 60
1.26 1.5876 32
2.26 5.1076 8

We find s? := >0, (z; — Z)?/(n — 1) = .7561. The sample variance s* is an
estimate of Var(X). In this case Var(X) = A. So both # = .74 and s? = .7561
are estimating A. The fact that these values are not very different can be seen
as an indication that the Poisson model is appropriate. One may ask which
one of the two estimators is “better”. This is theory treated for example in the
course Fundamentals of Mathematical Statistics.

Example B Let the data X1,..., X, be ii.d. copies of X ~ N(u,0?), where
both i and o2 are unknown. Then the methods of moments estimator is

_ 1< _ _
p=X, 00 =—3 XI-(X)=—-) (Xi—-X)
=1
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Example C Let X ~ Gamma(a, \):
EX = a), Var(X) = a\?

Then EX? = a(a + 1)A2. So the methods of moments estimator (&, ) solve
the two equations

It follows that

Example D Let the data X,..., X, be i.i.d. copies of X where X has pdf

_1+0z

s —l<e<l —1<f<l

po ()
Then g

The methods of moments estimator is thus § = 3X.

Example E (Mixtures, compare AD Theorem 7.1) Let X have density

po(x) == 7711¢<$ ; yl) + (- 7T1)1¢><$ — ,,2)

1 1 T2 T2

where ¢ is the standard normal density. To simplify, we assume that m = %,
v1 = 0 and 73 = 1 are given. We write v := 15 and 7 := 7. The unknown
parameter is 6 = (v, 7). We have
1 2
EX = 3 EX* =

1 1
5 + 5(7/2 +7’2).

So the method of moments estimator (2, 7) solve

1. . 1
V= U1, -+

1. . .

5 §(V2+72)=u2.
Hence

=201, 7* = 2fiy — 447 — 1.

Plug in method The method of moments is inspired by the LLN, but the
LLN can also be a source of inspiration for further constructions.

Example 6.3 LN Let (X,Y) € R2. Recall the best linear predictor of Y given
X (see AD Example 11.8) is o + X with

Cov(X,Y)
Var(X)

Let now (X1,Y1),...,(Xn,Y,) be i.i.d. copies of (X,Y). Then, the LLN leads
to the estimators

a=FEY - BEX, 8=

1 «—n o >
o e oa wimX - X)) -Y)
a:=Y - BX, g:= %Z?:l(Xi—X)Q
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A~

The estimator (&, B)T is called the least squares estimator. Note that

(O}> —arg min Zn:(n — (a+bX;))2

T 2
B (a,b)T€R? —

Example Let X have CDF F. Assume the median m := F~1(3) exists. Let E,
be the empirical distribution function. Then we can estimate m by a solution
m of F,(m) ~ 1/2. The sample median is

M= XX g '
—+—5—*— mneven

Here X(l) <. < X(n) are the order statistics.
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Maximum likelihood (LN Section 6.2.2)

Let the data be X ~ Py, 0 € ©, with pmf/pdf py.
Recall the Bayesian MAP estimator

Oriap = arg max py(X)w (1)
9E6

= arg max{logpﬂ (X) +log w(v) } .
YeO

Definition The mazimum likelihood estimator (MLE) of 0 is

é = X
MLE arggeagpﬂ( )

(assuming the maximum exists).

Note When O is a bounded set (in R?) the MLE is thus the MAP with uniform
prior.

Note
OvLg = arg max log py(X).
(S(C]
Remark The pmf/pdf py(X) considered as a function of 9 is called the likelihood.
In other words, the likelihood is ¥ — py(X).

Remark If the data are actually Xy, ..., X,, i.i.d. copies of a random variable
X with pmf/pdf pg, 8 € O, then the likelihood is

9 [ [ po(X0).
i=1

The MLE is then

n
é = X;
MLE = arg max Zl:[l po(X)

n
arggleag; og py(X;)

The MLE can often (not always) be obtained by setting the derivative of the
log-likelihood to zero:

n

355X =0, s0) = o5 logpa(-)

i=1

LLN as source of inspiration: One can show that

0 = argmax Eylog py(X),
Y€
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and also - under regularity conditions -
S S9 . 0g Dy

LN Example 6.9 Let the data be X1,..., X, bei.i.d. copies of X ~ N (u,0?),
where both p and o2 are unknown, i.e. § = (u,0?). Writing 9 := (f1,52) the
log-likelihood is

Z?:l(Xi - /1)2 _

n
n n ~
> logpy(Xi) = — log(2m) — - log 5% — 557
=1

2 2

Taking derivatives w.r.t. i gives

Yo (X — fivLE)
)
OMLE

= 0’
so that jnvLE = X. As
n
X =argmin » (X; — f1)°,
a4
=1

it is also called the least squares estimator (LSE) of pu.

Inserting jivre = X and differentiating w.r.t. 62 gives

n +Z?:1(Xi_)?)2 =0
26’1%/ILE

- 263111
S0 O3pp = %Z?:l(Xi — X)2. Thus, in this case the MLE equals the method
of moments estimator.

LN Example 6.8 Let the data X1, ..., X,, bei.i.d. copies of X ~ Laplace(y,o?),
where both ;1 and 02 are unknown, i.e. § = (i, 0?). The pdf of X is then

1 T —
pg(x):%exp[—’ J,u|], x € R.

The log-likelihood based on the sample (X7,...,X,) is

n n -
» X, —
E logpﬂ(Xi)=—n10g2=n10g&—w, 19:(/17&)
o
=1

It follows that .
AMLE = arg mjnz | X — fil.
L
For n even the minimizer is not unique. We take the sample median
X nt1 n odd
(*3)

1 =m:=

2 n even
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where X(1) < --- < X, are the order statistics. The sample median is often
called the least absolute deviations (LAD) estimator of .

Let us briefly see whether the LLN can make sense out of this estimator. One
may verify that

EIX — i :2/ (1 F(x))de + ji — EX,
x>

where I is the CDF of X. One can find

argmin E|X — i
m

by setting the derivative of E|X — fi| to zero
—2(1 — F(ﬂ))‘ﬁ:argmin +1=0.
In other words

arg min E|X — i = F~' (1),
m

is the theoretical median (provided it exists).
We still have to calculate the MLE of ¢. By differentiating the log-likelihood

w.r.t. o one gets
n A~
n + > iz | Xi — -0

OMLE e

b
which gives oy = % Yo | X —ml.

Remark Estimating the mean EX by the LSE X remains a valid procedure
also for non-Gaussian data. Similarly, the LAD estimator m remains valid
estimator of the median ¥ _1(%) also when the data are not Laplacian.

Example Let the data be X ~ Binomial(n, ), where the success probability
0 < @ < 1is unknown. Then for z € {0,1,...,n}

pota) = (7)1 - o,

and
log py = log <n>azlogz9 + (n—x)log(1—9).
x
We have p . ¥
n J—
—1 X)=—— )
a9 8P =5 =T
Setting this to zero gives
X - X
n o,

Ovre 1 — Ovie
giving

A X
OMLE = —
n
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(compare with a Bayesian estimator, e.g. the MAP).

LN Example Section 6.3.3 Let the data X1,..., X, be i.i.d. copies of X €
{1,...,k}. For example, X represents a “class label”. The probability of a
particular label is unknown:

Py(X =j)=05 j=1,...k,

where 0 € @ = {9 e R¥: 9, >0V j, 2?21 ¥ = 1}. We may write

log py(x E:I{gC jy log ¥;.

Hence the log-likelihood based on Xi,..., X, is

Elogpg ZZI{X —j) log ¥ —ZN log ¥,

=1 j=1

where Nj := > 1rx,—;3 = #{Xi = j} counts the number of observations with
the label j (j =1,...,k). To find the maximum of the log-likelihood under the
restriction that Z§:1 9¥; = 1 we use a Lagrange multiplier, we maximize

k k
ZNj logﬁj + )\(1 - 279])

J=1 Jj=1

Differentiating and setting to zero gives for the MLE 0

k
Nj
39, {ZN]ogﬁ +)\1—Zz9]} :é.—A_O
7j=1 0 J
Thus Y
b= j=1,... .k
] )\a] 9 9

The restriction now gives

<.

k
N.
=25

j=1

and since Z?Zl N; = n we obtain A = n. The MLE is therefore
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Hypothesis testing (LN Section 6.3)

Let X € X, X ~ Py, 8 € © We consider two hypotheses about the parameter
0: for O C O©,0, CO,00NO; =10

Hy : 6 € ©g the null hypothesis,

H, : 6 € ©; the alternative hypothesis.

Example Let X ~ Binomial(n, ) and
HO 1 0=
H1 ;0=
Suppose we observe the value X = 14. We have

Py (X = 14) = 074 |

Py, (X = 14) = 112 .

We see that the likelihood Py, (X = 14) is larger than the likelihood Pp, (X =
14). The value § = 2 is the maximum likelihood estimate over {3,3}. The
likelihood ratio is

)

NS NI

Py, (X = 14)
Ppy (X = 14)

Is this large enough to reject Hy in favour of Hy?

=1.51.

To answer the question in the above example, we need to agree on a criterion
for evaluating whether or not rejecting the null hypothesis is a good decision.
The point of view one uses in statistical hypothesis testing is that the null
hypothesis Hy represents a situation where “everything is as usual”’, or “no
evidence found”. For example, if it concerns the decision of putting someone in
prison or not, it makes sense to choose

Hj : the person is innocent |,

Hy : the person is guilty ,

when convicting an innocent person is an error considered worse than not to
convict a guilty person.

The Bayesian approach is to put a prior on Hy and H;. In the frequentist
approach, no prior is used. We can make two errors: rejecting Hy (accepting
H,) when Hj is true (error first kind) and not rejecting Hy when H; is true
(error second kind). It is (generally) not possible to keep both errors under
control. The idea is now to keep the probability of the error of first kind below
a (small) prescribed value a.

Hy H
error probability
p=1]| first =
kind power
error
¢=0 second
kind

Definition A statistical test® at given level o (0 < a < 1) is a (measurable)

3We extend this to “randomized” tests ¢ : X — [0, 1] in the next definition
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map ¢ : X — {0,1} such that

1: Hy rejected
0: Hp not rejected

and such that
Pgo(qb(X) = 1) <aV e

The power of the test at 01 € ©1 is Py, (¢(X) = 1).
Example X ~ Binomial(n, ), with n = 20.

Hoieﬁl,
H120>§‘
We choose o« = .05. Let
1 X>c¢
X) = ,
5(%) {0 ro

where we now need to choose the “critical value” c is such a way that

Py (X >c¢)<aVb<

l\.')\r—t

We have

V= Py(X >¢) = Z ()19271— )

+

is increasing in 9 so that

" n\ 1
max P (X > ¢) = By (X > )= ) <>2

It holds that

Py — %(X >15) < _a, < PQOZ%(X > 14).
= —
=0.0207 005 =0.0577

We choose the critical value ¢ as small as possible: ¢ = 15.

Definition A randomized statistical test at given level a (0 < a < 1) is a
(measurable) map ¢ : X — [0,1] such that

: Hj rejected
#(X)=<~v€(0,1): Hy rejected with probability v
0: Hy not rejected

and such that
E90¢(X) <aVbe 0.

The power of the test at 01 € Oy is Eg, ¢(X).
Example X ~ Binomial(n,#), with n = 20.
H(): 0 S % 5
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Hi: 60> % ’
We choose o« = .05. We have

Pp—1(X >15) <a < Py _1(X > 14)

1 1
2 2
S0 we can write
o= PQO:%(X > 15) + ’YPQO:%(X = 15)

where
ARy (X1
7= B (X=15)

Thus a test at level « is

1 X>15
H(X)={.79 X=15 .
0 X<15

Suppose we observe X = 14. Then Hy cannot be rejected.
Simple hypothesis versus simple alternative (LN Section 6.3.3)

Ho: 9:90 s
H1: (9:91 .

Let po(-) := pa,(-) be the pmf/pdf under Hy and p;(-) := pg, be the pmf/pdf
under Hj.

Definition A Neyman-Pearson test is of the form

1 z;§§§ > co
onp(X) =y Zégﬁg =Co
0 Ry <

where cg > 0 and v € [0,1] are given constants.

Neyman-Pearson Lemma Let o € (0,1) be a given level. Choose ¢y and ~y
m such a way that

E90¢NP(X) = Q.
Then for all (randomized) tests ¢ with Eg,¢(X) < a it holds that

Eg, ¢(X) < Eg,onp(X).

In other words, ¢np has mazimal power among all tests with level c.

Proof for the discrete case. We have

B (90X) = 0560 = 3 (30) = o) )

x
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- Z (& — ¢np) p1 + Z (¢ — énp)p1 + Z (¢ — énp) D1

p1/Po>co <0 p1/po=co p1/po<co >0
<co >, (b—¢np)potco Y (d—dxp)pota Y, (6 dnp)po
p1/po>co P1/Po=co P1/Po<co

= coFy, (QE(X) - ¢NP(X)> = (EQOQNS(X) - Oé) <0.

O
LN Example 6.13 Consider X ~ Binomial(n, ) and
Hy: 6=16y ,
H1 . 9 = 91 5

where 61 > 6. Then

pi(x) _ [91/(1 —91)]30(1—91) -

p0($) 90/(1 — 90) 1-— 00
<~
91/(1—91)] (1—91>
zlog| ———%| +nlog| ——— ) > loge¢
g[GO/(l—Qo) E\1=0,) ~ 8@
>0 as 61>60g
<~

log ¢y — nlog ( i—(%)

61/(1—6
g | 44143

x > = C.

A Neyman-Pearson test thus

1 X>c
onp(X) =<y X=c.
0 X<e

If we choose the critical value ¢ in such a way that

Py, (X > ¢) <a<  Pp(X>c—1)

———— N———
=3 se (1)08(1—60)" = =3 se 1 (1)08(1—60)n—*
and then
= Pgo (X > C)
Pgo (X = C) ’

then Eg,¢np(X)) = a and ¢np is most powerful among all tests with level c.
Note that ¢ and v do not depend on #;: the test only depends on the sign of
01 — 0o.

Example Let Xq,...,X, be ii.d. ./\/'(,u,ag) where p is unknown and 03 is
known. Write the density of Xy,...,X,, as

1 i (i — p)?
pu(ﬂfl, .. .,.fn) = Wexp —zT .
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Then

Py (%1, Tn) exp :_2}‘3 <Zn:(xl — )’ - Zn:(ﬂci - MO)QH

Puo (wla s 75571) i=1 =1

= exp E <—2 i(fﬂz‘ — po) +n(p — Ato)Q)]

_203 —
"

= exp|— <nfC —npp — n(p — Mo)z/Qﬂ
Kegi

It follows that

le(X17---7Xn) > o & {X>C lful > o

pMQ(Xlw'an) X<C lf/J,1<,U,()

To test Hy : p = po we consider 3 alternative hypotheses.

Hy: p=p1 > po. Then ¢onp(Xy,..., X,) = 1{X>c} where the critical value ¢
is such that F,,,¢np(X1,...,Xn) = a. We have

for

T gmrg g,

00
Thus
c=po+® 11— a)oy/yVn.

For example for o = .05 it holds that ®~!(1 — a) = 1.65.

Hy: p=p1 < po. Reject Hy if
X < po— 711 — a)oo/vn.

H; : p # po. The Neyman Pearson lemma cannot be used. It can be shown
(see e.g. Fundamentals of Mathematical Statistics) that the following test is in
some sense optimal: reject Hy if

X>p+@'(1—%2)oo/vVnor X < pg— 01— L)oo/ v/n.

For example for o = .05 it holds that ®~!(1 — §) = 1.96.
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One sample tests (LN Section 6.3.2)

Theorem Let X1,..., X, be i.i.d. N'(u,0?). Define X := %Z?ﬂ X, and 52 =
ﬁ > (Xi— X)2. Then
~ tp—1

the Student distribution with n — 1 degrees of freedom.

Proof. We first show that for all i X; — X and X are independent (see also
AD Theorem 12.4). This follows from

Cov(X; — X, X) = Cov(X;, X) — Cov(X, X)

—————r
=Var(X)
1 — o?
== Cov(Xi, X;) — & =0.
nj=1 OV( ; j) n

The independence now follows from the fact that for multivariate normal ran-
dom variables, zero covariance implies independence. Thus S? and X are also
independent. Moreover

S~ (! S (K X)X

; o? ;
i=1 =1

By the definition of the x2-distribution, the right hand side has a y2-distribution.

X—u)? .. . . X, —X)?2 . .
71(072;0 has a X%—dlstrlbutlon. Since moreover Z?:l % is inde-

pendent of @ it must have a x2_,-distribution. The result now follows

from the definition of the Student distribution. O

Moreover

Remark The Student distribution is symmetric around 0. The density of the
ty,—1-distribution is

I'(3)

42 —n/2
1+ , teR.
(n— D351 ( n— 1>

Let ¢(n — 1, a) be the (1 — a)-quantile of the t,_;-distribution. Then we have

> o l(1-a) Vn
C(n_La){—MI)l(l—a) n— oo

f-1(t) =

The Student test

Let Xi,...,X, be iid. N(u,o?) where both p and o are unknown.

Ho: p<po,
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Hy: op>pp .
Reject Hy if B
X > pg+c(n—1,a)S/vn.

Then

max P,(Hy rejected) = P, (Hp rejected) = a.
H<po

HO D> Mo,
Hy: p<pp.
Reject Hy if

HO: w = to ,
Hy: op# o
Reject Hy if

X < pg—c(n—1,0)8/vn.

X>po+celn—1,%)S/vVnor X < pg—c(n—1,%)S/vn.

Numerical example:

X; (.TZ — ZE) (l‘l — .T)2
4.5 0 0

4 -.5 .25
3.5 -1 1

6 1.5 2.25

) .5 .25

4 -.5 .25

We have n = 6, 2 = 4.5, Y (2; — 7)? = 4, s> = .8 and s/y/n = .365. With
a = .05 the (1 — §)-quantile of the ¢5-distribution is ¢(5,0.025) = 2.571. Thus
¢(5,0.025)s/y/n = .939. For example

Ho: p=>51

is rejected when |z — 5.1| > .939. Thus Hp : p = 5.1 is not rejected as

1z — 5.1 = .6 < .939.

The values for p which are not rejected are all p such that |z — p| < .939, that
is all € [3.561,5.439]. We call [3.561,5.439] a 95% confidence interval for p.

Sign test

Let X1,...,X, be ii.d. with common CDF F. We assume F is continuous in
m := F~1(). We consider the testing problem
Hy: m=mg ,
Hi: m#mg .
As test statistic we take
T = #{Xi > mo}
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and as (non-randomized) test

H(T) = {1 Toilze

0 [T-%|<c

where c¢ is such that
PHO(]T—Z| 20) <a

I
N

=D k-1 2 (1) Fr=11-G(0)

and c is as small as possible. One calls 1 — G(|T'—n/2|) the p-value. Reject Hy
if the p-value is at most a. We can write for ¢ < n/2,

Y

¢(T)::{1 T<éorT>n—¢

0 else

where
PT<ée)+PT>n—¢)<a

=23k (1)27

Numerical example continued

The normal distribution is symmetric around g so m = p. We test
HO L= 5.1 s

Hy: p#51 .

We have

2
G(0) = Pigy (T < 0 0r T > 6) = Py, (T = 0) + Prgy (T = 6) = - = 03125 < .05

so we can take ¢ = 0.* The observed value of T is T = 1. Therefore we cannot
reject Hy. Since n = 6 we have |T'— 5| = 2. The p-value is

14
1= G(2) = ¢ = 21875 > 05.

Definition Let T be a test statistic such that large values of T are evidence
against Hy : 0 = 60y. We reject Hy when T > ¢ where ¢ is such that

1-G(c) <a

with 1 — G(c) := Py, (T > ¢). The p-value is then 1 — G(T).

4A randomized test at level o = .05 is

1 T=0o0orT =6
HT)=S L T=1orT=5.
0 else

Indeed

1
Epy(T) = Pro(T =0 0r T = 6) + 5Py (T = Lor T = 5) = .05.
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Note 1 — G is a decreasing function, so
T>c=1-G(T)<1-G(c)=qu

Thus if the p-value is at most « we reject Hy.
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Two sample tests

The data consists of two samples X1,..., X, and Y7,...,Y,,.
The two sample student test

Model:
Xi,..., X, Y1,...,Y, independent

~N(p1,0%)  ~N(p2,0%)

We want to test
Ho: p1 = pe
Hy: opy # po.

If p11 = po then for n large X ~ Y. This leads to rejecting Hy if | X — Y| > ¢
where the critical value c is to be chosen in such a way that

P, (|X —=Y|>c¢) =«

where 0 < a < 1 is a given level. So we need to find the distribution of X — Y
under Hy. It holds that

2 2
XNN(/'LL)O-)?)_/N-/\[(MQ?U)'
n m

E(X —Y) = — pa,

Moreover

and since X and Y are independent

2 2
Var(X — Y) = Var(X) + Var(Y) = % + % = 02<n+m>.

Thus

Standardizing gives

n-—+m o

We consider two cases.

02 = 03 known: | Then we can take as test statistic

T = [[nm X —Y‘
n—+m oy
Under Hy the statistic Ty has a standard normal distribution. We reject Hy
when |Ty| > (1 — $). Then

Py, (Hy rejected) = Py, <\T0\ > <I>_1(1 - 3‘)) = a.
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In other words the critical value is ¢ = ®~1(1 — §), /%25, (With the “com-

mon” choice v = .05 it holds that ¢ = (1.96),/ %™y, i.e., roughly twice the
standard deviation of X —Y).

To estimate the standard deviation of X — Y we need an esti-

mator of o2. A good choice turns out to be the “pooled sample” variance
1 n m
5% = — X, — X)? Y, —Y)?},
R P #3051

which is unbiased. Standardizing with the estimated standard deviation gives
the statistic

nm X-Y

" Vn+m §

But because S is random T is no longer normally distributed. This is not
really a problem, as long as its distribution under Hy does not depend on
unknown parameters. It is now not difficult to show that under Hy, T has a
Student distribution with n+m—2 degrees of freedom, the tn+m_2—distribution5.
Therefore, with c(n+m —2, §) the (1 — §)-quantile of the ¢, y,, o-distribution,
we reject Hy if |T'| > c(n+m — 2, 5) or equivalently if | X — Y| > ¢ where the

critical value ¢ is ¢ = c(n+m — 2,5),/ %S,

The two sample Wilcoxon text, or Mann-Whitney U test

Model:
X1,...,Xn, Y1,...,Y,, independent
~F ~G
where F' and G are two unknown continuous distributions.

We want to test
Hy: F=aG,
H1 : F;’é G.

We construct a test statistic as follows. Let N := n 4+ m be the pooled sample
size and (Z1,...,2ZN) = (X1,..., X, Y1,...,Y) be the pooled sample. In the
pooled sample, let Z(;) < --- < Zy) be the order statistics. Let R; := rank(X;)
in the pooled sample (i.e. Zg,) = X;) i = 1,...,n and Ry; := rank(Y};) in
the pooled sample, j = 1,...,m. If F = G then (Ry,..., Ry, Rnt1,...,RN) is
a random permutation of the numbers {1,..., N}. This means that under Hy
the ranks R,..., R, have the same distribution as a random sample without
replacement of size n from an urn with N balls numbered from 1 to N. The
Mann-Whitney U statistic is

U .= zn: Ri.
i=1

°As in the one sample case, » " | (X; — X)?/o* has a x2_;-distribution. Similarly,
- Y)Q/g2 has a X2, _1-distribution. The two sums-of-squares are independent and
independent of X and Y.
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The Wilcoxon test statistic is
W .= #{XZ > Y]}
One may verify that U and W are equivalent:

n(n+1).

U=W+ ==

numerical example

z rank

r1 =36 8
1'2:9 4

£U3—7 2

x4 = 100 9
ZC5—3 1

y1 =5 3

y2—37 7
y3:11 5
6

Table 1: n =5, m=4, Eg,(U) =25, u=24, w=9

Lemma
i) By (U) = "5
ii) Var g, (U) = 2D,

Proof. (Compare AD, Section 6.5 on the Hypergeometric distribution.)
i) For all 4

1
Py, (R; =k) = N’ k=1,...N
Hence N
1 N+1
BmRi=) kg ="5—
k=1
and so
n(N +1)
ii) For all 4
N
1 N+ 1)(2N +1
k=1

w0 (N+DHEN+1) (N+1) N*—1

4 12 0.

VarHO (Rz) =

Further for ¢ # j

1
Ei Ry = 3 Koy
k£l
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N(N+1)> (N+1)@2N+1) (N+1)(3N2— N —2)

4(N —1) 6(N—-1) 12(N - 1)

Thus
o (N+1)BN*-N-2) (N+1?*  o?
Coving (Ri, 1) = 12(N — 1) T4 T N-TU
It follows that
n 2
o o  SN-—n
VarHO(ZRi)—nU —n(n—l)N_l—nJ N1

i=1

Corollary Ep,(W) = "5, Vary, (W) = nm(1]\2[+1)‘

Standardizing:

 U—-Eg,(U) W —Eg,(W)
o Varg, (U) B Varp, (W)

For n and m large, T has under Hj approximately a A/(0, 1)-distribution. (This
does not follow from the “usual” CLT.)

Numerical example continued

24 — 2
24=250_ /3 _ s,

20x8 7
12

The approximate p-value is 2(1 — ®(.655)) = .513.

| =
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Goodness-of fit tests

Kolmogorov-Smirnov tests

Model: Xi,..., X, iid. with CDF F.
HO : F= Fo.

Recall the empirical distribution function

. 1 &
Fo(z) =~ lix,<ap @ ER.
1=1

Kolmogov-Smirnov tests are based on a comparison of F, with Fy. The test
statistic is
Too :=sup |F,(x) — Fy(z)],
x

or its variants

T, = / |E () — Fo(2)[Pde, 1< p < 0.

An approximation of the distribution of T}, (1 < p < oo) under the null hypoth-
esis follows from probability theory (not treated here). One may also simulate
the null-distribution.

The y>-test: simple hypothesis
Let X € {1,...,q} represent a class label. Write

Py(X =j) =0y,

where

q
0 €0 :={0=(01,...,09): 9, >0V j, > =1}
j=1

Suppose we want to test

HO 1 0= 90

The data consist of i.i.d. copies Xi,...,X,, of X. The maximum likelihood
estimator of 6 is

. N; L
0j=— Nj=#{Xi=j} j=1,...q

The idea is now to reject Hy if 0 is very different from the hypothesized 6.
One may use for instance the Euclidean distance between 6 and 6y as a test
statistic. One may however want to take into account the different variances of
the estimators of the components. A test statistic that does so is the so-called
x? test statistic
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Theorem For n large, Py,(x? < t) =~ G(t) for all t, where G is the CDF of a
x%(q — 1)-distribution.

No proof. (See Fundamentals of Mathematical Statistics for a proof.)

Special case: ¢ = 2. Then X := Nj ~ Binomial(n,p) where p := 6, and
No=n—X,0,=1-—p. So

s (X —np)? (n—X-n(1-p)*> (X —np)?
X =" 7 n(1—p) ~ np(l—p)

By the CLT
X —np

np(1 —p)
is approximately N (0, 1)-distributed, and so its square

(X — np)?
np(1 — p)

is approximately x?(1)-distributed (by the definition of the x2-distribution).
The y’-test: composite hypothesis

The random variable X € {1,..., ¢} again represent a class label and

Py(X=j)=0;,j=1,...,q

Suppose we want to test m < ¢ — 1 restrictions
H0: Rk(Q) :0, k:l,...,m . Let

fo = ar max Njlogv;
0 gﬁee Ri(9)=0, k=1,....m Z &

be the maximum likelihood estimator under the m restrictions. Define the test
statistic
=y Bamrhy
= n00 J

Under some regularity conditions, the distribution of x? under Hj is approxi-
mately x?(m). Thus we reject Hy when x? > G~!(1 — a) where G is the CDF
of the x?(m)-distribution. Then

P, (Hyp rejected) =~ a.

Note A special case is the simple hypothesis Hy : 8 = 6. This corresponds to
m = q — 1 restrictions.

Contingency tables

This paragraph treats a special case of the previous paragraph.
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Let X .= (Y, Z) e {(k,l): k=1,...,p, l=1,...,q} and

Py <X = (k,l)> = Oy

p q
e ={0={0: k=1,....p,1=1,....q} Opy =0Vk1> > Oy =1}
k=11=1

where

We aim at testing whether Y and Z are independent. Define the marginals

q p
Mk ::Zek’l (k':1,...,p), & ::ZekJ (l:1>"'7Q)'
=1 k=1

The null hypothesis is Hy : 0, = ni&, V k1 .
The data are {X; = (Y;,Z;) : i =1,...,n}, ii.d. copies of X = (Y, Z). The
maximum likelihood estimator is as before

A N,
O = Mok =1,....p,1=1,...,q,
n

where Ny = #{(Y;, Z;) = (k,)} k=1,....p,l=1,...,q.
Write

q p
Ni 4 = ZNW (k=1,...,p), Ny;:= ZNk,l (l=1,...,9).
=1 k=1

Lemma The mazimum likelihood under the restrictions of Hy is

Proof. The log-likelihood is
P q
Z Z Ny, log V.
k=11=1

We now have the restriction dy; = ﬁkél for some non-negative 7j, él, with
> ik =1and >/, & = 1. The restricted log-likelihood is therefore

q
> Ny log(iiky)
11=1

P q L
=33 Nilogin + Y Niglogy

k=1 1=1 k=1 =1

NE

b
Il

68



p q
= Z Ni,+ log i, + Z Ny i logé.
=1 =1

The two terms can now be maximized separately, as done previously (where we
used a Lagrange multiplier). O

It follows that S
¢=3 (Nig = Ne, o Nyy/n)*
Ni+Nyi/n

k=1 1=1
The original number of free parameters is
pq — 1.
The number of free parameters under Hy is
p—1+qg—1

The number of restrictions is therefore
m = (pq—1> - <p—1+q—1) =(p-1(g-1).

So x? is approximately x?((p — 1)(¢ — 1))-distributed under Hy.
Special case: p=q =2
Nigp | Nig | Ni4

Noq | Nag | Nog
Nii | Nyg| n

or, using alternative symbols

A|B | R

cC|\D|S

PlQ|n
Then

o n(AD — BC)?
X = T PQRS

It has approximately a 2(1)-distribution under Hy.
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Tabulated statistics: Beverage, Personality
Rows: Beverage Columns: Persopelity

Extrovert Introwvert ALl

Coffas 26 T 1
Tea B 11 17
il 32 18 50
Cell Concenta: Count

Pearaon Chi-Sguare = 9.212, DF = 1, P-Walu= = 0.002
Likelihood Ratio Chi-5Squape = 9.162, OF = 1, P-¥alue = 0.002

In the above example

(26 x 11 — 6 x 7)2

2
— 50
X X 32 x 18 x 33 x 17

=9.212.

Remark Let X ~ Binomial(ni,p;) and Y ~ Binomial(ng, p2) be independent
and suppose we want to test

Hy: p1 =p2=:p where 0 < p <1 is an unknown common value.

An estimator of p; is p; = X/n; and an estimator of ps is p2 = Y/na. We reject
Hy if |p1 — p2|? is large.

X Y X+Y
n—X|ny—Y n—(X—I—Y)
ni na ni=mni+ng
We have n
V. p1 — p2) =p(l —p)——
arp, (P1 — P2) = p( p)n1n2’
and we can estimate this by
Vars, (b1 — o) = P(1 — )
ar — = —
Ho\P1 — P2 p p o

where p = (X +Y)/n. The standardized test statistic is now

b~ Paf” _ n(AD - BOP?

TR, | PQES

nin2
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Confidence sets (LN Section 6.4)

Numerical example: (Recap)

X; (:EZ — Lf) ((E, — .i’)2
4.5 0 0

4 -.9 .25
3.5 -1 1

6 1.5 2.25

) .5 .25

4 -.5 .25

We have n = 6, & = 4.5, s* = .8 and s/y/n = .365. With a = .05 the (1 — §)-
quantile of the ts-distribution is ¢(5,0.025) = 2.571. Thus ¢(5,0.025)s/y/n =
.939. Assuming i.i.d. Gaussian data the interval

7+ ¢(5,0.025)s/v/n = 4.5 £ .939 = [3.561, 5.439]
is a 95% confidence interval for u.

Consider an X € X with distribution Py depending on § € ©. Let ¢g(f) € R be
a parameter of interest. Write v = g(0) and I" := {g(0) : 0 € ©}.

Recall that a statistic is a measurable map X — R.
Definition Let T = T'(X) and T = T(X) be two statistics with T < T. One
calls [T, T] a (1 — a)-confidence interval for g(0) if

P9<T§g(9)§T>21—a, vV 6eo.

More generally, we may consider confidence sets. We consider a mapping
J := X — {subsets of I'}

(such that I() :={x: v € J(z)} is measurable for all v € T").

Definition Let . One calls J a (1 — «)-confidence set for g(0) if

Py <g(9) = J(X)) >1-a, V0cO.
Example Let X1,..., X, be i.i.d. N(u,c?).

Confidence interval for u, 02 =: 63 known
Then

X -2 (1- 2)oo/vnX + 271 (1— 2L)oo/Vn]

is a (1 — «)-confidence interval for u:

P, (X L1 - oo/ << X481 g)oo/\/ﬁ>
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= Pu(“ — o M(1-L)op/Vn< X <p+@'(1- ‘;)Uo/ﬁ>

:P<’i/_\/%‘ §<1>—1(1—g)> =1-a.

Confidence interval for y, o? unknown
Then

X —c(n—1,2)S/v/n, X +c(n—1,%)8/Vl,

is a (1 — a)-confidence interval for p. Here

1 _
S% = — > (X - X)?
i=1

is the sample variance and c¢(n — 1, %) the (1 — §)-quantile of the Student
distribution with n — 1 degrees of freedom.

Confidence interval for o2, p = o known
Then

[ no2 no? ]
Gn'(1-%) G.'(%)

is a (1 — a)-confidence interval for 2. Here

Z(Xi — 110)?
=1

and G, is the CDF of the x?(n)-distribution. Indeed,

6% =

SRS

since n62 /% ~ x%(n).

’ Confidence interval for o2, p unknown‘

Then
[ (n—1)8? (n— 1)5’2}
G.L(1—-%) G.Li(5)

is a (1 — a)-confidence interval for o2. Here

1 _
§% = — > (X - X)?

=1

and G,_1 is the CDF of the x?(n — 1)-distribution. A one-sided confidence
interval for o2 (right-sided) is



since

[y

P, <a2 < (2;_11()5)2> = P<(”_21)S2 > G;il(a)> =1-o.

Numerical example continued
The sample size is n = 6. We take a = .05. Then G, ' (1 — $) = 12.83 and
G, 11 (%) = .83. The sample variance is s

for o2 is

= .8. So a 95% confidence interval

312 < 02 < 4.18

and so a 95% confidence interval for o is
56 =1.312 < o < V4.18 = 2.19.

If one is interested in a upper bound for ¢ we use that G, (a) = 1.145. So a
one-sided 95% confidence interval for o2 is

o? < 3.491

and a one-sided 95% confidence interval for o is

o <v3.491 = 1.868.

AD Example 10.19 Let X ~ Poisson(\).
We take a = .05 and for simplicity replace ®~!(1 — §) = 1.96 by 2.

Approximate confidence interval for A using the CLT‘
For X large, (X — \)/v/A is approximately A/(0,1) distributed. Hence

Rewrite this to

PA<)\6 [X+2—2\/X+1,X+2+2\/X+1D ~ .95.

[X+2—2\/X+1,X+2+2\/X+1]

is an approximate 95% confidence interval.
’Approximate confidence interval for A using the CLT and estimated variance
We can estimate the variance by

Var(X) := X.

For X large X — \/vX is approximately N (0, 1)-distributed (see e.g. Funda-
mentals of Mathematical Statistics). An approximate 95% confidence interval
based on this is

(X —2vVX, X +2VX].
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The duality between confidence sets and tests

Let X € X, X ~ Py, § € O and let v := g(f) € R be a parameter of interest.
Define I' := {y = ¢(#) : 6 € ©}. Consider some set C C X x I and let for
vyeTl

Aly) ={z: (z,7) eC} C X,

and for z € X
B(z) :={y: (x,7) e C} CT.

(We assume that A(y) is measurable for all v € T".)

Duality Theorem (LN Theorem 6.4)

The set B(X) is a (1 — «)-confidence set

=

For all v € T', ¢(X,790) 1= Lae(y0)(X) is a level o test for Ho : g(6) = 0.

Proof.
P06 =1) = Po(X ¢ 40

—n(xmec)=1-n(xmec)
:1—P9<yeB(X)>.

O

Example Let X1,..., X, be iid. N(u,0?) with 02 =: 03 known. We let
~ := . Then we may take

B(X1,...,Xp) = [X — (1)71(1 — %)UO/\/E,X +(I)71(1 — 3)00/\/%:|,
and then

Alp) = 1= 870 = oo/ i+ 071 = $)o0/ Vi

Example 6.15 Consider X ~ Binomial(n,#) with 0 < # < 1 unknown. We
present three ways for the construction of confidence intervals for 6.

Exact confidence interval using the Duality Theorem‘

For the hypothesis

Hy: 6=10y ,

we use the test

1 X> 5(90) orX < Q(eo)

0 else

P(X, bo) == { :
where ¢(6p) < ¢(6p) (both in {0,...,n}) are determined by

Py, (X > 0(00)) < % <Py, (X > &(60) — 1)

=2 k>2(80) ()0k (1—60)n—*
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Pgo (X < 6(90)> < % < Pgo (X < Q(@o) + 1> .
So
A(6o) = {x € {0,...,n} : c(B) < = < &(60)}

and
C={(x,0) €{0,...,n} x[0,1] : ¢(0) <z <)},

B(z) ={0€[0,1] : ¢(0) <z <¢&0)}.
We let for z € {0,...,n — 1}, 8(z) be defined by

k<x

and for x € {1,...,n}, 6(x) be defined by

> (Z)G(w)’“(l —f(z))k = %

k>x

and further take (n) = 1 and §(0) = 0. Then [9(X),0(X)] is an exact (1 — a)-
confidence interval for 6.
Approximate confidence interval using the CLT‘

We reject
HO . 9 = 90 5
when x 0
’ -n 0| (1)71(1 _ %)
nbo(1 — bp)
i
So x 0
B(x) = {9 X b > z}
nf(1l —0)
2 22z(n—1x) 24
22 + Z
s o S
n+ 22 n+ 22

Approximate confidence interval using the CLT and estimated Variance‘
By the CLT

X —nb
Varg(X)

is approximately N (0, 1)-distributed. We have Varg(X) = nf(1 — ) which can
be estimated by

A~

\//;"9(X) = nf(1 —0).

Then
X —nb

Varg(X)

75



is still approximately A(0,1)-distributed (see for example Fundamentals of
Mathematical Statistics). We can then take

B(x)::{eegiz 79;(1_2)/@}

22z(n—1x)
- {9 ety }
n n
Numerical example
Let n = 38 and suppose we observe X = 20. Then, using the third method

above, an approximate 95% confidence interval for 6 (and using ®~1(.975) ~ 2)
is

2 2 1
O:|:2 0 x 18

33 TR .526 £ .162.
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The linear model

Consider n independent observations Y71, ...,Y,. This time we do not assume
that they are identically distributed. Let X € R™*P be a given matrix with
(non-random) entries {x;; : i = 1,...,n, j = 1,...,p}. One calls X the

design matrix. The fact that we assume it to be non-random means we consider
the case of fixed design. We now look for the best linear approximation of Y;
given x; 1,...,x;p. We measure the fit using the residual sum of squares. This
means that we minimize

n

p 2
Z(E —a—Z:chbj) .
j=1

i=1
over a € R and b = (by,...,b,)T € RP.
To simplify the expressions, we rename the quantities involved as follows. Define

for all 4, ;41 := 1 and define b,y1 := a. Then for all 7 a + Z§:1 x; b =

Zi’i% x; jb;. In other words, if we put in the matrix X a column containing
only 1’s then we may omit the constant a. Thus, putting the column of only
1’s in front and replacing p + 1 by p, we let

1 x172 DY :I;l,p

1 x2’2 DR ‘T27p
X =

1 xn72 DY xn7p

Then we minimize
n P 2
> <Yz—§ xi,jba) :
i=1 j=1

over b= (by,...,b,)T € RP.

Let us denote the Euclidean norm of a vector v € R™ by

[vll2 ==
Write
Yy
Y=|":
Y,
Then
n V4 2
>o(i= Yty ) =l - X0l
i=1 j=1
One calls

3= in [|Y — Xbl|3
p := arg min | I
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the least squares estimator.

The distance between Y and the space {Xb: b € RP} spanned by the columns
of X is minimized by projecting Y on this space. In fact, one has

10
5%”1/ — Xb|j3 = -XT(Y — Xb).

It follows that 3 is a solution of the so-called normal equations

XT(v -xB)=0

or
XTy = XTXp.

If X has rank p, the matrix X7 X has an inverse (X7 X)~! and we get
B=(XTx)"'xTy.
The projection of Y on {Xb: b€ RP} is

X(xTx)yxTy.
N

projection

Recall that a projection is a linear map of the form PPT such that PTP = I.
We can write X (XTX)"1XT := ppT.S

Example with p=1

Forp=1
1 il
1 x9
X = )
1 x,
Then

oty = (03t (o) (Kl )

Moreover

Y
xTy = " .

5Write the singular value decomposition of X as X = P¢Q”, where ¢ = diag(¢1,. .., dp)
contains the singular values and where PTP =T and QTQ =I.
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A~

We now let (changing notation: & := B, B = B2)
(g) — (xTx)"1xTy

- < (2 - >> (=2 ) (=)

=1

n -1 n 3, _ n
— Z(x — 7)>2 > it Y — > i1 TiY
— ! —nzY + > 0 Y

n 1 B - B

= Z(m —7)* Y-z -z, ;Y; — nzY)
i=1 Z Yo Y, —nxY :

Here we used that 3., z} = > i (i — 7)%2 + nz?. We can moreover write

n n
Y Y -nz¥ =) (z,—-1)(Y; - Y).
=1 =1

& Y — Bz
(B) = | X2 (@) yi-Y) |-
Y (wi—x)?

These expressions coincide with what we derived as method of moments estima-
tors (see also LN Example 6.3). See also AD Example 11.18 for the theoretical
counterpart.

Thus

15

1.0

0.5

0.0
|

-0.5
|

Simulated data with Y = .3+ .6 x  + ¢, ¢ ~ N(0, i), a=.19, 3 =.740

Definition For f = EY we let 3* := (XTX) !XT f and we call X B* the best
linear approximation of f.

Lemma Suppose EeeT = 02I. Then
i) B = B*, Cov(B) = e*(XTX)™1,
i) E|X(8 — )5 = o?p,

iii) E|XB - flI3 = |X8" — flI3+ o%p
—— ~

approximation estimation
error error
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Proof.
i) By straightforward computation

f—p=XTX)'xTe.
=B

We therefore have X
E(B— %) = BEe =0,

and the covariance matrix of 3 is

Cov(3) = Cov(Be) = B Cov(e) BT
N —
=02]

= o?BBT = o*(XTX)71,
ii) Define the projection PPT := X(X7X)~'XT. Then

V4
IX (8 - 843 = IPP e} := > V2,
j=1

where V := PTe,
EV = PTEe =0,

and
Cov(V) = PTCov(e)P = o°I.

It follows that » »
Y VY B o
Jj=1 Jj=1
iii) It holds by Pythagoras’ rule for all b
1X0— I3 = 1 X (0~ B3+ 1X8" — fI3

since X 8* — f is orthogonal to X. a

Lemma Suppose € : =Y — f ~ N(0,0%I). Then we have

i) B~ B~ N(0,0*(XTX)71),

. X A_ *\ (12

i) Il (5025 iz Y2(p).

Proof.

i) Since f is a linear function of the multivariate normal €, the least squares

estimator § is also multivariate normal.

ii) Define the projection PPT := X(XTX)~!XT. Then
X P
IX(8 = 8413 = IPP 3 := )V}
j=1

Now V := PT¢ has i.i.d. N(0,0)? entries. 0
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Remark More generally, many estimators are approximately normally dis-
tributed (for example the sample median) and many test statistics have ap-
proximately a x? null-distribution (for example the x? goodness-of-fit statis-
tic). This phenomenon occurs because many models can in a certain sense
be approximated by the linear model and many minus log-likelihoods resemble
the least squares loss function. Understanding the linear model is a first step
towards understanding a wide range of more complicated models.

Corollary Suppose the linear model is well-specified: for some g € RP
EY = X5.

Assume € :=Y — EY ~ N(0,0?). where 0% := 03 is known. Then a test for
Ho: B=po ,

is:

reject Hy when HX(B - 893/ > G;l(l —a),

where Gy, is the CDF of a x*(p)-distributed random variable.

Remark When ¢? is unknown one may estimate it using the estimator

2112
5 Ll
n—p

where € :=Y — X B is the vector of residuals. Under the assumptions of the
previous corollary (but now with possibly unknown o2) the test statistic || X (5—
B9)||2/5% has a so-called F-distribution with p and n — p degrees of freedom.
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High-dimensional statistics

Let X1,...,X, beiid. (say) copies of X ~ Py, § € © C RP. Thus, the number
of parameters is p and the number of observations is n. In high-dimensional
statistics, p is “large”, possibly p > n. We consider here a prototype example,
namely the linear model.

In the linear model one has data (Xi,Y7),...,(X,,Y,) with X; € RP a p-
dimensional row vector and Y; € R (: =1,...,n) and one wants to find a good
linear approximation using the least squares loss function

n p 2
b 2(1’1 — X;Xi,jbj> .
i= i=

Define (with some clash of notation) the design matrix

X1 X110 Xip
Xe=|{: )= -
Xn Xn,l e Xn,p
and the vector of responses
Y1
Y =
Yo

Then

n

p 2
>o(vim Yo wun ) = Iy - X
J=1

i=1

If p > n minimizing this over all b € R? gives a “perfect” solution BLS with
XBrs =Y. This solution just reproduces the data and is therefore of no use.
We say that it overfits.

Definition The ridge regression estimator is

Ari e ‘= i Y — Xbl|3 + \2||b||2
Bigen = angin{ 1Y — X013 + X013

where A > 0 is a regularization parameter.

Definition The Lasso estimator is
Brases = argmin ¥ = X013 + 20101 .

where X\ > 0 is a reqularization parameter and ||b||; := ?:1 |bj| is the £1-norm
of b .

Note Consider the model Y = X 3+ ¢ with € ~ N(0,02I). The ridge regression
estimator is the MAP estimator using as prior fi, ..., 8, i.i.d. ~ N(0, 72). The
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Lasso estimator is the MAP using as prior fi,..., 3, i.i.d. ~ Laplace(0,7?).
The tuning parameter is then in both cases \? = o2 /72.

Remark As A\ grows the ridge estimator shrinks the coefficients. They will
however not be set exactly to zero. The coefficients of the Lasso estimator
shrink as well, and some - or even many - are set exactly to zero. The ridge
estimator can be useful if p is moderately large. For very large p the Lasso is to
be preferred. The idea is that one should not try to estimate something when
the signal is below the noise level. Instead, then one should simply put it to
Zero.

Remark Both ridge estimator and Lasso are biased. As A increases the bias
increases, but the variance decreases.

Remark The regularization parameter A is for example chosen by using “cross
validation” or (information) theoretic or Bayesian arguments.

Lemma The ridge estimator Bridge s given by

Bridge = (XTX +X21)71x Ty,

Proof. We have
1

20

{||YXb\|§+A2||bH§} = - X"(Y-Xb)+ b= -XTY + (XTX+)\2I> b.
ob

The estimator Bridge puts this to zero. O

For the Lasso estimator there is no explicit expression in general. We therefore
only consider the special case of orthogonal design and that all columns in X
have the same length. If X hasi.i.d. rows, this assumption is not very likely, so
we therefore assume X is non-random at this point. One calls this fixed design.

Lemma Suppose X is a fized design matriz and XTX = nl (thus p < n
necessarily). Define Z := XTY. Then for j=1,...,p

R Zj/n—)\/n ZjZA
ﬂLasso,j =40 ’Zj’ <A\
Zijn+Xn Z; < =)\
Proof. Write BLassO =: B for short. We can write
|V — Xb|2 = ||Y]|3 — 26" XTY + nb'b = —2b7 Z + nbTb.
Thus for each j we minimize

—2b;Z; + nb5 + 2X|bj].
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If Bj > ( it must be a solution of putting the derivative of the above expression
to zero:

—Zj+nﬁj+)\:0,
or

By = Zj/n—X/n.

Similarly, if /S’j < 0 we must have
—Zj+n5j —)\:0.

Otherwise Bj =0.0

Some notation

o For a vector z € RP we let ||2]|c := maxi<j<p |2;| be its {og-norm.

o For a subset S C {1,...,p} we let X3% be the best linear approximation of
f := EY using the variables in S, i.e., X35 is the projection in R" of f on the
linear space {> ;. X. jbs; : bs € RISH.

In the next theorem we again assume orthogonal design. For general design,
one needs so-called “restricted eigenvalues”.

Theorem Consider again fized design with XTX = nl. Let f = EY and
e =Y — f. Fiz some level o and suppose that for some A\, it holds that
P(|XTe|loo > Aa) < a. Then for X\ > A, we have with probability at least
l-«

1o — 113 < mind 12055 — FIB+ (A4 Au8]

approximation estimation
error error

Proof. Write 3 := frasso and f = XpB. On the set where || XT¢||oo < A\ We
have R
-nlBi| > A4+ Ao = n|B — B <A+ Aq,

- Bl S A+ Xa = 15— Bl < 1651
So with probability at least (1 — «),

||XBLasso - f”% < Z nﬁ? + (/\ + )\a)Z (#{] : n|ﬁj| > N+ )\a}>

n|Bj|<A+Xa
= min{ 1035 = 1 + -+ 181}

O

Corollary Suppose that f = X3 where B has s := #{j : B; # 0} non-zero
components. Then under the conditions of the above theorem, with probability
at least 1 — «

HX(BLasso - B)H% < ()\ + )\a)28.
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The above corollary tells us that the Lasso estimator adapts to favourable sit-
uations where § has many zeroes (i.e. where 3 is sparse).

To complete the story, we need to study a bound for A,. It turns out that for
many types of error distributions, one can take A\, of order y/log p.

Remark. The value a = % thus gives a bound for the median of || X B asso — f |3
In the case of Gaussian errors one may use “concentration of measure” to deduce
that || X Brasso — f]|3 is “concentrated” around its median.
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