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Solution 10.1 Let θ follows a continuous distribution,
(a) let a ≤ q,

E[L(θ, a)− L(θ, q)] =E[(L(θ, a)− L(θ, q))(1{θ≤a} + 1{a<θ<q} + 1{q≤θ})]
=E[c(a− θ − q + θ)1{θ≤a}] + E[(θ − a− c(q − θ))1{a<θ<q}]

+ E[(θ − a− θ + q)1{q≤θ}]
=c(a− q)P(θ ≤ a) + (1 + c)E(θ1{a<θ<q})− (a+ cq)P(a < θ < q)

+ (q − a)P(q ≤ θ)
≥(q − a)[P(q ≤ θ)− cP(θ ≤ a)] + a(1 + c)P(a < θ < q)
− (a+ cq)P(a < θ < q)

=(q − a)[P(q ≤ θ)− cP(θ ≤ q)].

Similarly we have

E[L(θ, a)− L(θ, q)] ≤ (q − a)[P(a ≤ θ)− cP(θ ≤ a)].

(b) Let q be a 1/(1 + c)-quantile of θ. Then

P(θ ≤ q) = 1/(1 + c) and P(θ ≥ q) = c/(1 + c).

For all a ≤ q, by the first inequality,

E(L(θ, a)− L(θ, q)) ≥ 0.

For all a ≥ q, by the second inequality,

E [L(θ, a)− L(θ, q)] ≥ (q − a) (P[q ≤ θ]− cP[θ ≤ q]) = 0.

Thus q minimizes E[L(θ, a)] among all a ∈ R, it is the Bayes estimator with loss function L.

Solution 10.2
(a) Recall that X follows the Poisson distribution with mean θ then

P[X = k] = e−θ
θk

k! .

And θ has the probability density function

fθ(x) = x3−1e−x

Γ(3) = x2e−x/2.

The conditional probability density function of θ is obtained as before (compare Exercise 8.5),

fθ|2,2,6,0,3(x) = x2e−x/2 · e−5xx2+2+6+0+3/(2!2!6!0!3!)∫∞
0 s2e−s/2 · e−5ss2+2+6+0+3/(2!2!6!0!3!)ds

= e−6xx15∫∞
0 e−6ss15ds

= e−6xx15 616

Γ(16) := ξ(x|2, 2, 6, 0, 3)
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Remark also that the posterior distribution of θ is the Gamma distribution with parameter
(α = 16, β = 6).

(b) The squared error loss function is

L(θ, a) = (θ − a)2.

The Bayes estimator of θ is the a which minimizes

E[L(θ, a)|observation] =
∫
L(x, a)ξ(x|observation)dx,

where ξ(θ|observation) is the posterior probability density function of θ given the observation.
We have computed the k-th moments of Gamma distribution X with parameter α and β in
previous series, in particular

E(X) = α

β
, E(X2) = α(α+ 1)

β2 .

Hence

E[(θ − a)2|2, 2, 6, 0, 3] = E[θ2|2, 2, 6, 0, 3]− 2aE[θ|2, 2, 6, 0, 3] + a2

= 17× 16
62 − 2a16

6 + a2

=
(
a− 8

3

)2
+ 4

9 .

The Bayes estimate for the observation 2, 2, 6, 0, 3 is 8/3.

Solution 10.3 First we calculate the joint probability density function of X1, · · · , Xn, θ:

fX1,··· ,Xn,θ(x1, · · · , xn, x) = xy(1− x)n−y Γ(α+ β)
Γ(α)Γ(β)x

α−1(1− x)β−1

= Γ(α+ β)
Γ(α)Γ(β)x

α+y−1(1− x)β+n−y−1

where y = x1 + · · · + xn. So that the marginal probability density function of X1, · · · , Xn at
(x1, · · · , xn) is∫ 1

0

Γ(α+ β)
Γ(α)Γ(β)x

α+y−1(1− x)β+n−y−1dx = Γ(α+ β)
Γ(α)Γ(β)

Γ(α+ y)Γ(β + n− y)
Γ(α+ β + n) .

Thus the conditional probability density function of θ given x1, · · · , xn is

fθ|x1,··· ,xn(x) = Γ(α+ β + n)
Γ(α+ y)Γ(β + n− y)x

α+y−1(1− x)β+n−y−1,

which is the Beta distribution with parameters α+ y and β + n− y.

Solution 10.4

(a) The integral of ξ is∫ ∞
0

βα

Γ(α)θ
−(α+1)e−β/θdθ = βα

Γ(α)

∫ 0

∞
− β

y2 β
−(α+1)yα+1e−ydy

= 1
Γ(α)

∫ ∞
0

yα−1e−ydy

=1

Updated: May 19, 2017 2 / 4



Probability and Statistics, Spring 2017 Solution sheet 10

(b) Let Θ be a random variable following the inverse gamma distribution with parameter α and
β, and let X be a random variable such that the conditional probability density function
given Θ = θ is

fX|θ(x) = 1√
2πθ

e−(x−µ)2/2θ.

The conditional probability density function of Θ given X = x is

fΘ|x(θ) =
ξ(θ)fX|θ(x)∫∞

0 ξ(θ)fX|θ(x)dθ

=
ξ(θ)fX|θ(x)

βα

Γ(α)
√

2π

∫∞
0 θ−(α+1/2)−1e−(β+(x−µ)2/2)/θdθ

=
βα

Γ(α)
√

2π θ
−(α+1/2)−1e−(β+(x−µ)2/2)/θ

βα

Γ(α)
√

2π
Γ(α+1/2)

[β+(x−µ)2/2]α+1/2

= (β′)α′

Γ(α′) θ
−α′−1e−β

′/θ.

Where we set α′ = α+ 1/2 and β′ = β + (x− µ)2/2. The conditional distribution of Θ given
X = x is an inverse Gamma distribution with parameter α′ and β′. Thus the family of inverse
Gamma distribution is a family of prior distributions for samples from a normal distribution
with a known mean µ and an unknown value of the variance.

Solution 10.5 At time t = 2, X,Y, Z are independently and identically normally distributed with
mean 0 and variance 2σ2. Let ‖x, y, z‖ denote the euclidean distance from (x, y, z) to 0,

P(‖X,Y, Z‖ ≤ 4σ) = P((X2 + Y 2 + Z2)/2σ2 ≤ 8).

Since X2 + Y 2 + Z2 = 2σ2[(X/
√

2σ)2 + (Y/
√

2σ)2 + (Z/
√

2σ)2], we have

X2 + Y 2 + Z2

2σ2 ∼ χ2(3).

The distribution of χ2(3) is a Gamma distribution with parameter (3/2, 1/2) , with probability
density function

f(x) = (1/2)3/2

Γ(3/2) x
1/2e−x/2.

We find that the probability of the particle to be in the ball of radius 4σ around 0 is the probability
of a χ2(3)-distributed random variable being less than 8:

P[(X2 + Y 2 + Z2)/2σ2 ≤ 8] = (1/2)3/2

Γ(3/2)

∫ 8

0
x1/2e−x/2dx.

Solution 10.6

(a) First we have to prove that U is measurable. For this we observe that U (m) :=
∑m
n=1 Un2−n

is measurable as a finite sum of measurable functions and we have the pointwise convergence

Un → U.

Second we have to understand the measure that U produces on R. For this, it is enough to
show that the measure induced by U coincides with the uniform measure on the intervals of
the form [

k

2n ,
k + 1

2n

]
,
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for k ∈ N ∈ [0, 2n − 1]. This is because they generate the Borel σ-algebra.
Note that

P[(∃n ∈ N)(∀m ≥ n)Xm = 1] = 0,

thanks to Borel-Cantelli Lemma. So we can work in

Ω̃ := Ω\{ω ∈ Ω : (∃n ∈ N)(∀m ≥ n)Xm = 1},

i.e. our probability space is (Ω̃, Ã, P̃) where Ã = A |Ω̃ and P̃ := P |Ω̃. Now we have that if
k =

∑n−1
i=0 ki2i ∈ {0, 1, .., 2n − 1}:

P
[
U ∈

[
k

2n ,
k + 1

2n

]]
= P

[2n−1⋂
i=0
{Ui+1 = kn−i}

]

=
2n−1∏
i=0

P[Ui+1 = kn−i]

= 2−n.

That is the probability of a uniform random variable to be in
[
k
2n ,

k+1
2n
]
.

(b) Take (Un)n∈N Bernoulli with parameter p = 1
2 i.i.d. Thanks to part (a) we have that

U :=
∑n
n=1 Un2−n is uniform distributed and it is normal if and only if∑n

k=1 1{Uk=1}

n
→ 1

2 .

Then:

P[U is normal] = P
[∑n

k=1 1{Uk=1}

n
→ 1

2

]
= 1.

Where in the last equality we have used the strong law of large numbers.
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