Probability and Statistics

Solution sheet 10

Solution 10.1 Let θ follows a continuous distribution,
(a) let $a \leq q$,

$$
\begin{aligned}
\mathbb{E}[L(\theta, a)-L(\theta, q)]= & \mathbb{E}\left[(L(\theta, a)-L(\theta, q))\left(\mathbb{1}_{\{\theta \leq a\}}+\mathbb{1}_{\{a<\theta<q\}}+\mathbb{1}_{\{q \leq \theta\}}\right)\right] \\
= & \mathbb{E}\left[c(a-\theta-q+\theta) \mathbb{1}_{\{\theta \leq a\}}\right]+\mathbb{E}\left[(\theta-a-c(q-\theta)) \mathbb{1}_{\{a<\theta<q\}}\right] \\
& +\mathbb{E}\left[(\theta-a-\theta+q) \mathbb{1}_{\{q \leq \theta\}}\right] \\
= & c(a-q) \mathbb{P}(\theta \leq a)+(1+c) \mathbb{E}\left(\theta \mathbb{1}_{\{a<\theta<q\}}\right)-(a+c q) \mathbb{P}(a<\theta<q) \\
& +(q-a) \mathbb{P}(q \leq \theta) \\
\geq & (q-a)[\mathbb{P}(q \leq \theta)-c \mathbb{P}(\theta \leq a)]+a(1+c) \mathbb{P}(a<\theta<q) \\
& -(a+c q) \mathbb{P}(a<\theta<q) \\
= & (q-a)[\mathbb{P}(q \leq \theta)-c \mathbb{P}(\theta \leq q)] .
\end{aligned}
$$

Similarly we have

$$
\mathbb{E}[L(\theta, a)-L(\theta, q)] \leq(q-a)[\mathbb{P}(a \leq \theta)-c \mathbb{P}(\theta \leq a)]
$$

(b) Let q be a $1 /(1+c)$-quantile of θ. Then

$$
\mathbb{P}(\theta \leq q)=1 /(1+c) \text { and } \mathbb{P}(\theta \geq q)=c /(1+c)
$$

For all $a \leq q$, by the first inequality,

$$
\mathbb{E}(L(\theta, a)-L(\theta, q)) \geq 0
$$

For all $a \geq q$, by the second inequality,

$$
\mathbb{E}[L(\theta, a)-L(\theta, q)] \geq(q-a)(\mathbb{P}[q \leq \theta]-c \mathbb{P}[\theta \leq q])=0
$$

Thus q minimizes $\mathbb{E}[L(\theta, a)]$ among all $a \in \mathbb{R}$, it is the Bayes estimator with loss function L.

Solution 10.2

(a) Recall that X follows the Poisson distribution with mean θ then

$$
\mathbb{P}[X=k]=e^{-\theta} \frac{\theta^{k}}{k!}
$$

And θ has the probability density function

$$
f_{\theta}(x)=\frac{x^{3-1} e^{-x}}{\Gamma(3)}=x^{2} e^{-x} / 2
$$

The conditional probability density function of θ is obtained as before (compare Exercise 8.5),

$$
\begin{aligned}
f_{\theta \mid 2,2,6,0,3}(x) & =\frac{x^{2} e^{-x} / 2 \cdot e^{-5 x} x^{2+2+6+0+3} /(2!2!6!0!3!)}{\int_{0}^{\infty} s^{2} e^{-s} / 2 \cdot e^{-5 s} s^{2+2+6+0+3} /(2!2!6!0!3!) d s} \\
& =\frac{e^{-6 x} x^{15}}{\int_{0}^{\infty} e^{-6 s} s^{15} d s} \\
& =e^{-6 x} x^{15} \frac{6^{16}}{\Gamma(16)}:=\xi(x \mid 2,2,6,0,3)
\end{aligned}
$$

Remark also that the posterior distribution of θ is the Gamma distribution with parameter ($\alpha=16, \beta=6$).
(b) The squared error loss function is

$$
L(\theta, a)=(\theta-a)^{2}
$$

The Bayes estimator of θ is the a which minimizes

$$
\mathbb{E}[L(\theta, a) \mid \text { observation }]=\int L(x, a) \xi(x \mid \text { observation }) d x
$$

where $\xi(\theta \mid$ observation $)$ is the posterior probability density function of θ given the observation. We have computed the k-th moments of Gamma distribution X with parameter α and β in previous series, in particular

$$
\mathbb{E}(X)=\frac{\alpha}{\beta}, \quad \mathbb{E}\left(X^{2}\right)=\frac{\alpha(\alpha+1)}{\beta^{2}}
$$

Hence

$$
\begin{aligned}
\mathbb{E}\left[(\theta-a)^{2} \mid 2,2,6,0,3\right] & =\mathbb{E}\left[\theta^{2} \mid 2,2,6,0,3\right]-2 a \mathbb{E}[\theta \mid 2,2,6,0,3]+a^{2} \\
& =\frac{17 \times 16}{6^{2}}-2 a \frac{16}{6}+a^{2} \\
& =\left(a-\frac{8}{3}\right)^{2}+\frac{4}{9}
\end{aligned}
$$

The Bayes estimate for the observation $2,2,6,0,3$ is $8 / 3$.
Solution 10.3 First we calculate the joint probability density function of $X_{1}, \cdots, X_{n}, \theta$:

$$
\begin{aligned}
f_{X_{1}, \cdots, X_{n}, \theta}\left(x_{1}, \cdots, x_{n}, x\right) & =x^{y}(1-x)^{n-y} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \\
& =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha+y-1}(1-x)^{\beta+n-y-1}
\end{aligned}
$$

where $y=x_{1}+\cdots+x_{n}$. So that the marginal probability density function of X_{1}, \cdots, X_{n} at $\left(x_{1}, \cdots, x_{n}\right)$ is

$$
\int_{0}^{1} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha+y-1}(1-x)^{\beta+n-y-1} d x=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \frac{\Gamma(\alpha+y) \Gamma(\beta+n-y)}{\Gamma(\alpha+\beta+n)} .
$$

Thus the conditional probability density function of θ given x_{1}, \cdots, x_{n} is

$$
f_{\theta \mid x_{1}, \cdots, x_{n}}(x)=\frac{\Gamma(\alpha+\beta+n)}{\Gamma(\alpha+y) \Gamma(\beta+n-y)} x^{\alpha+y-1}(1-x)^{\beta+n-y-1}
$$

which is the Beta distribution with parameters $\alpha+y$ and $\beta+n-y$.

Solution 10.4

(a) The integral of ξ is

$$
\begin{aligned}
\int_{0}^{\infty} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{-(\alpha+1)} e^{-\beta / \theta} d \theta & =\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{\infty}^{0}-\frac{\beta}{y^{2}} \beta^{-(\alpha+1)} y^{\alpha+1} e^{-y} d y \\
& =\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty} y^{\alpha-1} e^{-y} d y \\
& =1
\end{aligned}
$$

(b) Let Θ be a random variable following the inverse gamma distribution with parameter α and β, and let X be a random variable such that the conditional probability density function given $\Theta=\theta$ is

$$
f_{X \mid \theta}(x)=\frac{1}{\sqrt{2 \pi \theta}} e^{-(x-\mu)^{2} / 2 \theta}
$$

The conditional probability density function of Θ given $X=x$ is

$$
\begin{aligned}
f_{\Theta \mid x}(\theta) & =\frac{\xi(\theta) f_{X \mid \theta}(x)}{\int_{0}^{\infty} \xi(\theta) f_{X \mid \theta}(x) d \theta} \\
& =\frac{\xi(\theta) f_{X \mid \theta}(x)}{\frac{\beta^{\alpha}}{\Gamma(\alpha) \sqrt{2 \pi}} \int_{0}^{\infty} \theta^{-(\alpha+1 / 2)-1} e^{-\left(\beta+(x-\mu)^{2} / 2\right) / \theta} d \theta} \\
& =\frac{\frac{\beta^{\alpha}}{\Gamma(\alpha) \sqrt{2 \pi}} \theta^{-(\alpha+1 / 2)-1} e^{-\left(\beta+(x-\mu)^{2} / 2\right) / \theta}}{\frac{\beta^{\alpha}}{\Gamma(\alpha) \sqrt{2 \pi}} \frac{\Gamma(\alpha+1 / 2)}{\left[\beta+(x-\mu)^{2} / 2\right]^{\alpha+1 / 2}}} \\
& =\frac{\left(\beta^{\prime} \alpha^{\alpha^{\prime}}\right.}{\Gamma\left(\alpha^{\prime}\right)} \theta^{-\alpha^{\prime}-1} e^{-\beta^{\prime} / \theta} .
\end{aligned}
$$

Where we set $\alpha^{\prime}=\alpha+1 / 2$ and $\beta^{\prime}=\beta+(x-\mu)^{2} / 2$. The conditional distribution of Θ given $X=x$ is an inverse Gamma distribution with parameter α^{\prime} and β^{\prime}. Thus the family of inverse Gamma distribution is a family of prior distributions for samples from a normal distribution with a known mean μ and an unknown value of the variance.

Solution 10.5 At time $t=2, X, Y, Z$ are independently and identically normally distributed with mean 0 and variance $2 \sigma^{2}$. Let $\|x, y, z\|$ denote the euclidean distance from (x, y, z) to 0 ,

$$
\mathbb{P}(\|X, Y, Z\| \leq 4 \sigma)=\mathbb{P}\left(\left(X^{2}+Y^{2}+Z^{2}\right) / 2 \sigma^{2} \leq 8\right)
$$

Since $X^{2}+Y^{2}+Z^{2}=2 \sigma^{2}\left[(X / \sqrt{2} \sigma)^{2}+(Y / \sqrt{2} \sigma)^{2}+(Z / \sqrt{2} \sigma)^{2}\right]$, we have

$$
\frac{X^{2}+Y^{2}+Z^{2}}{2 \sigma^{2}} \sim \chi^{2}(3)
$$

The distribution of $\chi^{2}(3)$ is a Gamma distribution with parameter $(3 / 2,1 / 2)$, with probability density function

$$
f(x)=\frac{(1 / 2)^{3 / 2}}{\Gamma(3 / 2)} x^{1 / 2} e^{-x / 2}
$$

We find that the probability of the particle to be in the ball of radius 4σ around 0 is the probability of a $\chi^{2}(3)$-distributed random variable being less than 8 :

$$
\mathbb{P}\left[\left(X^{2}+Y^{2}+Z^{2}\right) / 2 \sigma^{2} \leq 8\right]=\frac{(1 / 2)^{3 / 2}}{\Gamma(3 / 2)} \int_{0}^{8} x^{1 / 2} e^{-x / 2} d x
$$

Solution 10.6

(a) First we have to prove that U is measurable. For this we observe that $U^{(m)}:=\sum_{n=1}^{m} U_{n} 2^{-n}$ is measurable as a finite sum of measurable functions and we have the pointwise convergence

$$
U_{n} \rightarrow U
$$

Second we have to understand the measure that U produces on \mathbb{R}. For this, it is enough to show that the measure induced by U coincides with the uniform measure on the intervals of the form

$$
\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right]
$$

for $k \in \mathbb{N} \in\left[0,2^{n}-1\right]$. This is because they generate the Borel σ-algebra.
Note that

$$
\mathbb{P}\left[(\exists n \in \mathbb{N})(\forall m \geq n) X_{m}=1\right]=0
$$

thanks to Borel-Cantelli Lemma. So we can work in

$$
\tilde{\Omega}:=\Omega \backslash\left\{\omega \in \Omega:(\exists n \in \mathbb{N})(\forall m \geq n) X_{m}=1\right\}
$$

i.e. our probability space is $(\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{\mathbb{P}})$ where $\tilde{\mathcal{A}}=\left.\mathcal{A}\right|_{\tilde{\Omega}}$ and $\tilde{\mathbb{P}}:=\left.\mathbb{P}\right|_{\tilde{\Omega}}$. Now we have that if $k=\sum_{i=0}^{n-1} k_{i} 2^{i} \in\left\{0,1, . ., 2^{n}-1\right\}$:

$$
\begin{aligned}
\mathbb{P}\left[U \in\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right]\right] & =\mathbb{P}\left[\bigcap_{i=0}^{2^{n}-1}\left\{U_{i+1}=k_{n-i}\right\}\right] \\
& =\prod_{i=0}^{2^{n}-1} \mathbb{P}\left[U_{i+1}=k_{n-i}\right] \\
& =2^{-n}
\end{aligned}
$$

That is the probability of a uniform random variable to be in $\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right]$.
(b) Take $\left(U_{n}\right)_{n \in \mathbb{N}}$ Bernoulli with parameter $p=\frac{1}{2}$ i.i.d. Thanks to part (a) we have that $U:=\sum_{n=1}^{n} U_{n} 2^{-n}$ is uniform distributed and it is normal if and only if

$$
\frac{\sum_{k=1}^{n} \mathbb{1}_{\left\{U_{k}=1\right\}}}{n} \rightarrow \frac{1}{2}
$$

Then:

$$
\mathbb{P}[U \text { is normal }]=\mathbb{P}\left[\frac{\sum_{k=1}^{n} \mathbb{1}_{\left\{U_{k}=1\right\}}}{n} \rightarrow \frac{1}{2}\right]=1
$$

Where in the last equality we have used the strong law of large numbers.

