Probability and Statistics

Solution sheet 11

Solution 11.1 The Poisson distribution with mean λ has variance λ, thus the standard deviation σ is $\sqrt{\lambda}$. Given the parameter λ, the probability density function of the Poisson distribution is

$$
\mathbb{P}[X=k \mid \sigma]=e^{-\sigma^{2}} \frac{\sigma^{2 k}}{k!}
$$

Hence the M.L.E. is the value σ which maximizes

$$
f(\sigma)=\prod_{i=1}^{n} e^{-\sigma^{2}} \frac{\sigma^{2 X_{i}}}{X_{i}!}=\frac{\left(e^{-\sigma^{2}} \sigma^{2 \bar{X}}\right)^{n}}{X_{1}!\ldots X_{n}!}
$$

Where $\bar{X}=\left(X_{1}+\cdots+X_{n}\right) / n$. We need to find the σ which maximizes

$$
\begin{gathered}
g(\sigma)=e^{-\sigma^{2}} \sigma^{2 \bar{X}}=\exp \left(-\sigma^{2}+2 \bar{X} \ln (\sigma)\right) . \\
g^{\prime}(\lambda)=(-2 \sigma+2 \bar{X} / \sigma) g(\sigma)
\end{gathered}
$$

The maximum of g is reached when $\sigma=\sqrt{\bar{X}}$. Thus the M.L.E. of the standard deviation is $\sqrt{\bar{X}}$.

Solution 11.2 Let

$$
L(\theta):=\prod_{i=1}^{n} \theta X_{i}^{\theta-1}=\theta^{n}\left(\prod_{i=1}^{n} X_{i}\right)^{\theta-1}
$$

The derivative of $\ln (L)(\theta)$ is:

$$
\left[n \ln (\theta)+(\theta-1) \ln \left(\prod_{i=1}^{n} X_{i}\right)\right]^{\prime}=\frac{n}{\theta}+\ln \left(\prod_{i=1}^{n} X_{i}\right)
$$

Thus

$$
\theta_{0}=-\frac{n}{\ln \left(\prod_{i=1}^{n} X_{i}\right)}=-\frac{1}{\overline{\ln (X)}},
$$

where $\overline{\ln (X)}=\frac{1}{n} \sum_{i=1}^{n} \ln \left(X_{i}\right)$, is a critical point of L. For $\theta<\theta_{0}, \ln (L)$ is increasing and for $\theta>\theta_{0}$, $\ln (L)$ is decreasing. Thus θ_{0} is the global maximum, and is the M.L.E. of θ.

Solution 11.3 Define X the amount of marked fishes we fished. If there are N fishes in the lake, the probability of $X=3$ is given by

$$
\begin{aligned}
\mathbb{P}_{N}[X=3] & =\frac{\binom{5}{3}\binom{N-5}{8}}{\binom{N}{11}} \mathbb{1}_{\{N \geq 13\}} \\
& =\frac{5!(N-5)!11!(N-11)!}{3!2!8!(N-13)!N!} \mathbb{1}_{\{N \geq 13\}}:=g(N) .
\end{aligned}
$$

We have to find $N_{\max } \in \mathbb{N}$ so that $g\left(N_{\max }\right)=\sup _{N \in \mathbb{N}} g(N)$. We have that for $N \geq 13$

$$
\begin{aligned}
\frac{g(N)}{g(N+1)}-1 & =\frac{(N-12)(N+1)}{(N-4)(N-10)}-1 \\
& =\frac{3(N-17,333 \ldots)}{(N-4)(N-10)}
\end{aligned}
$$

thus,

$$
\frac{g(N)}{g(N+1)} \begin{cases}\leq 1 & \text { if } N \leq 17 \\ \geq 1 & \text { if } N \geq 18\end{cases}
$$

Then $N_{\max }=18$.
Solution 11.4 We have that the likelihood function is given by:

$$
\begin{aligned}
L\left(X_{1}, \ldots, X_{n}, \alpha\right) & =\prod_{i=1}^{n} \exp \left(\alpha-X_{i}\right) \mathbb{1}_{\left\{X_{i} \geq \alpha\right\}}, \\
& =\exp \left(n \alpha-\sum_{i=1}^{n} X_{i}\right) \mathbb{1}_{\left\{\bigcap_{i=1}^{n} X_{i} \geq \alpha\right\}},
\end{aligned}
$$

we note that $f(\alpha):=\exp \left(n \alpha-\sum_{i=1}^{n} X_{i}\right)>0$ is increasing, so its maximum is attained at the maximum point where $\mathbb{1}_{\left\{\bigcap_{i=1}^{n}\left\{X_{i} \geq \alpha\right\}\right\}} \neq 0$. Then the point that maximizes the likelihood is $\alpha=\min _{i=1, . ., n}\left\{X_{i}\right\}$.

Solution 11.5 Let μ and σ^{2} denote the mean and the variance of X_{i}, the density of X_{i} is

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

The 0.95 quantile of X_{i} is the value $\theta=\theta(\mu, \sigma)$ such that

$$
\mathbb{P}(X<\theta)=0.95=\mathbb{P}\left(\frac{X-\mu}{\sigma}<\frac{\theta-\mu}{\sigma}\right)
$$

thus $\theta_{0}=\frac{\theta-\mu}{\sigma}$ which implies that $\theta=\sigma \theta_{0}+\mu$.
The logarithm of the product of the X_{i} 's density is

$$
l\left(\mu, \sigma^{2}\right):=-\frac{n}{2} \ln \left(2 \pi \sigma^{2}\right)-\sum \frac{\left(X_{i}-\mu\right)^{2}}{2 \sigma^{2}}
$$

We look for μ and σ^{2} which maximizes $L\left(\mu, \sigma^{2}\right)$.

$$
\begin{gathered}
\frac{\partial L}{\partial \mu}=\sum_{i=1}^{n} \frac{X_{i}-\mu}{\sigma^{2}}=0 \\
\frac{\partial L}{\partial \sigma^{2}}=-\frac{n}{2 \sigma^{2}}+\left(\sum_{i=1}^{n} \frac{\left(X_{i}-\mu\right)^{2}}{2}\right) \frac{1}{\left(\sigma^{2}\right)^{2}}=0
\end{gathered}
$$

Which give, for any $\sigma^{2}, \mu \mapsto L\left(\mu, \sigma^{2}\right)$ is maximized when

$$
\mu=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

which is the sample average of X_{i}. And for $\mu=\bar{X}, \sigma^{2} \mapsto L\left(\mu, \sigma^{2}\right)$ is maximized when

$$
\sigma^{2}=\sum_{i=1}^{n} \frac{\left(X_{i}-\bar{X}\right)^{2}}{n}=\overline{\left(X_{i}-\bar{X}\right)^{2}}
$$

the sample variance.
We substitute the values of μ and σ^{2} into the expression of θ and gives the M.L.E. of 0.95 -quantile of X :

$$
\theta=\theta_{0} \sqrt{\overline{\left(X_{i}-\bar{X}\right)^{2}}}+\bar{X}
$$

