Probability and Statistics

Solution sheet 12

Solution 12.1

$$T = \frac{\sigma^2}{20} \sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma}\right)^2.$$

To find the 0.95-quantile of T, remark that

$$\mathbb{P}[T \le c] = \mathbb{P}\left[\frac{20}{\sigma^2}T \le \frac{20}{\sigma^2}c\right].$$

Where $\frac{20}{\sigma^2}T \sim \chi^2(20)$. We find in the table of the inverse cumulative distribution function of the Chi-squared distribution that the 0.95-quantile for $\chi^2(20)$ is 31.41. Hence

$$\frac{20}{\sigma^2}c = 31.41 \Rightarrow c = 31.41 \times 0.09/20 = 0.1413.$$

Solution 12.2 Let $(X_i)_{i=1}^n$ be an i.i.d sequence of Bernoulli(p) random variables. Let $X = \sum_{i=1}^{100} X_i$, then $X \sim Bin(100, p)$.

(a) We want to know whether the coin is fair or not, so our hypothesis are

$$H_0$$
: The coin is fair,
 H_1 : The coin is not fair.

That is to say

$$H_0: p = p_0 = \frac{1}{2},$$

 $H_1: p \neq p_0.$

Then we should use a two-sided test.

Under H_0 we have that $\mathbb{E}_0(X) = 50$ and $Var_0(X) = np_0(1 - p_0) = 25$. By central limit theorem, the distribution of $\frac{X-50}{5}$ can be approximated by the standard normal distribution. Let Φ be the c.d.f. of the standard normal distribution. Now, take c_1 and c_2 such that

$$0.01 \ge \mathbb{P}_0(X \notin (c_1, c_2))$$

= $1 - \mathbb{P}_0\left(\frac{c_1 - 50}{5} \le \frac{X - 50}{5} \le \frac{c_2 - 50}{5}\right)$
 $\simeq 1 - \Phi\left(\frac{c_2 - 50}{5}\right) + \Phi\left(\frac{c_1 - 50}{5}\right).$

We would like to make the rejection zone as large as possible, given that Φ is symmetric, we choose

$$\frac{c_1 - 50}{5} = -\frac{c_2 - 50}{5},$$
$$\Rightarrow c_1 = 100 - c_2.$$

$$0.01 \ge 1 - \Phi\left(\frac{c_2 - 50}{5}\right) + 1 - \Phi\left(\frac{c_2 - 50}{5}\right),$$
$$\Rightarrow \Phi\left(\frac{c_2 - 50}{5}\right) \ge 0.995$$
$$\Rightarrow \frac{c_2 - 50}{5} \ge 2.5758$$
$$\Rightarrow c_2 \ge 62.9,$$

then

$$K_{1\%} = [0; 37] \cup [63; 100].$$

Given that $60 \notin K_{1\%}$ we cannot reject H_0 with 0.01 level of significance.

(b) We have to take our hypothesis

$$H_0: p = p_0 = \frac{1}{2}$$

 $H_1: p > p_0,$

now we have to find c such that

$$0.01 \ge \mathbb{P}_0(X \ge c) \simeq 1 - \Phi\left(\frac{c - 50}{5}\right).$$

Then we have to choose $c \ge 61.6$, from what we have that $K_{1\%} = [62; 100]$. So we reject H_0 if we have 62 or more heads.

(c) Take $p_0 \in (0, 1)$ and

$$H_0: p = p_0,$$

$$H_1: p \neq p_0.$$

Note that $\mathbb{E}_0(X) = 100p_0$ and $Var_0(X) = 100p_0(1-p_0)$. Then, take c_1 and c_2 such that

$$\begin{aligned} 0.01 &\geq \mathbb{P}_0(X \notin (c_1, c_2)) \\ &= 1 - \mathbb{P}_0\left(\frac{c_1 - 100p_0}{10\sqrt{p_0(1 - p_0)}} \leq \frac{X - 100p_0}{10\sqrt{p_0(1 - p_0)}} \leq \frac{c_2 - 100p_0}{10\sqrt{p_0(1 - p_0)}}\right) \\ &\simeq 1 - \Phi\left(\frac{c_2 - 100p_0}{10\sqrt{p_0(1 - p_0)}}\right) + \Phi\left(\frac{c_1 - 100p_0}{10\sqrt{p_0(1 - p_0)}}\right). \end{aligned}$$

Doing the same that in question a we have that $c_1(p_0) = 100p_0 - 19.6\sqrt{p_0(1-p_0)}$ and $c_2(p_0) = 100p_0 + 19.6\sqrt{p_0(1-p_0)}$. Then we are interested in the set

$$\left\{ p : 100p - 19.6\sqrt{p(1-p)} \le 60 \le 100p + 19.6\sqrt{p(1-p)} \right\}$$

= $\left\{ p : (60 - 100p)^2 \le 19.6^2 p(1-p) \right\}$
= $[0.502; 0.691].$

Solution 12.3

Updated: May 19, 2017

(a) The null and alternative hypotheses are

$$H_0: \mu = \mu_0 (= 1.0085)$$
 and $H_A: \mu = \mu_A (= 1.008).$

We can use the test statistic $T = \bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$, which has under H_0 distribution $\mathcal{N}(\mu_0, \sigma/\sqrt{n})$. Lastly the rejection rule is that the null hypothesis is rejected if $T \leq c_{\alpha}$, with c_{α} determined by

$$P(T \le c_{\alpha}) = \int_{-\infty}^{c_{\alpha}} f_T(t)dt = \alpha (= 0.05).$$

We find $t = \bar{x}_n = \frac{\sum_{i=1}^n x_i}{n} \approx 1.0076$, and we have also

$$P(T \le c_{\alpha}) = P\left(Z \le \sqrt{n} \frac{c_{\alpha} - \mu_0}{\sigma}\right) = \alpha,$$

where Z has a standard normal distribution under H_0 . Hence, using the table, we obtain $\sqrt{n}\frac{c_{\alpha}-\mu_0}{\sigma} = -1.645$ thus $c_{\alpha} \approx 1.0078$. Consequently, since $t < c_{\alpha}$, we reject the null hypothesis H_0 .

(b) The power of the test is equal to the probability that the null hypothesis is rejected given that the alternative hypothesis is true:

$$\beta = P_A(T \le c_\alpha) = P_A\left(Z \le \sqrt{n}\frac{c_\alpha - \mu_A}{\sigma}\right),$$

where Z has a standard normal distribution under H_A . We have calculated in part **a**) $c_{\alpha} \approx 1.0078$, thus we get

$$\beta = P_A \left(Z \le \sqrt{n} \frac{c_\alpha - \mu_A}{\sigma} \right) \approx P_A (Z \le -0.5) = 1 - P_A (Z \ge -0.5)$$
$$= 1 - P_A (Z \le 0.5) = 1 - 0.6915 = 0.3085$$

(c) Changing to $\mu_A = 1.007$ leads then to a higher power of the test. A similar calculation provides

$$\beta = P_A\left(Z \le \sqrt{n}\frac{c_\alpha - \mu_A}{\sigma}\right) \approx P_A(Z \le 1.98) = 0.9761,$$

which is much better!

Solution 12.4

(a) Under the hypothesis that X has a Poisson distribution, then $\lambda = E[X]$. We use then as an estimator

$$\hat{\lambda} = \frac{\sum_{k=1}^{19} k \cdot N_K}{400} = \frac{\text{\#Colonies}}{\text{\#Squares}} = 2.44.$$

The expected number of squares with k bacterial colonies is then given by

$$E_k = 400 \cdot \mathbb{P}(X = k) \approx 400 \cdot \frac{\widehat{\lambda}^k e^{-\widehat{\lambda}}}{k!} = \widehat{E}_k.$$

(b) From part **a**), we get the following table:

k	\widehat{E}_k	$\widehat{E}_k - N_k$
0	34.86	-21.14
1	85.07	-18.93
2	103.78	23.78
3	84.41	22.41
4	51.49	9.49
5	25.13	-1.87
6	10.22	1.22
7	3.56	-5.44
8	1.09	-3.91
9	0.29	-2.70
10	0.07	-1.93
19	0	-1

At first glance, the deviations seem fairly large in absolute value, hence the assumption of X having a Poisson distribution with parameter $\lambda = 2.44$ appears inaccurate. A statistical test should thus be performed.

(c) For the last group $\{k \ge 8\}$, we have 11 observations and an expected number of bacterial colonies given by

$$400 \cdot \mathbb{P}(X \ge 8) = 400(1 - \mathbb{P}(X \le 7)) = 400(1 - \sum_{k=0}^{7} \mathbb{P}(X = k)) \approx 1.47.$$

Hence we get the following values

Note that the particular way of grouping doesn't influence too much the value of T_N , thus T_N would be large in any case. Lastly, we obtain the test statistic

$$T_N = \sum \frac{(\text{Obs.} - \text{Exp.})^2}{\text{Exp.}} = 100.41.$$

(d) If the value of T_N is too large (i.e. above a critical value c_α), we consider the hypothesis that X has a Poisson distribution with parameter $\lambda = 2.44$ to be inaccurate. The critical value c_α are defined by $\int_{c_\alpha}^{\infty} f_8(x) dx = \alpha$, where $f_8(x)$ is the density of a χ^2 distribution with 8 degrees of freedom. The table gives us then for $\alpha = 1\%$, a critical value of $c_\alpha = 20.090$. Therefore for both levels of confidence $\alpha = 5\%$ and 1%, the test tells us that the hypothesis is inaccurate, and should thus be rejected.

Solution 12.5 Given n = 25, the mean of X_i is μ and variance is 1,

$$\overline{X_n} \sim \mathcal{N}(\mu, \sigma^2/n) = \mathcal{N}(\mu, 1/25).$$

Thus $5(\overline{X_n} - \mu) \sim \mathcal{N}(0, 1)$. Let Y be a standard normal distributed random variable and Φ its

cumulative distribution function:

$$\begin{aligned} \pi(0.1|\delta) &= \mathbb{P}[X_n \le c_1|\mu = 0.1] + \mathbb{P}[X_n \ge c_2|\mu = 0.1] \\ &= \mathbb{P}[5\overline{X_n} - 0.5 \le 5c_1 - 0.5|\mu = 0.1] + \mathbb{P}[5\overline{X_n} - 0.5 \ge 5c_2 - 0.5|\mu = 0.1] \\ &= \mathbb{P}[Y \le 5c_1 - 0.5] + \mathbb{P}[Y \ge 5c_2 - 0.5] \\ &= \Phi(5c_1 - 0.5) + (1 - \Phi(5c_2 - 0.5)). \end{aligned}$$

Similarly,

$$\pi(0.2|\delta) = \Phi(5c_1 - 1) + (1 - \Phi(5c_2 - 1)).$$

We have to find c_1 and c_2 such that

$$\Phi(5c_2 - 0.5) - \Phi(5c_1 - 0.5) = 0.93 = \Phi(y + 0.5) - \Phi(x + 0.5)$$
(1)

and

$$\Phi(5c_2 - 1) - \Phi(5c_1 - 1) = 0.93 = \Phi(y) - \Phi(x)$$
(2)

where we set $x = 5c_1 - 1$ and $y = 5c_2 - 1$.

Taking the difference of (1) and (2), one gets:

$$\Phi(y+0.5) - \Phi(y) = \Phi(x+0.5) - \Phi(x).$$

By studying the monotonicity of the function $t \mapsto \Phi(t+0.5) - \Phi(t)$, any value can have at most two preimages, and the fact that $0.93 = \Phi(y) - \Phi(x)$ implies $x \neq y$. Hence x + 0.5 = -y. Substitute it in (2):

$$0.93 = 1 - \Phi(-y) - \Phi(x) = 1 - \Phi(x + 0.5) - \Phi(x)$$
$$0.07 = \Phi(x + 0.5) + \Phi(x).$$

It has a unique solution $x = x_0$ (by monotonicity of $x \mapsto \Phi(x+0.5) + \Phi(x)$). And $y = -x_0 - 0.5$. Hence $c_1 = x_0/5 + 1/5$ and $c_2 = -x_0/5 + 1/10$.

$\mathbb{P}(X \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right) \mathrm{d}y, \text{ for } x \ge 0$										
	0	1	2	3	4	5	6	7	8	9
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6408	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736
2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861
30	008650	008604	008736	998777	008817	008856	008803	008030	008065	998000
3.0	000030	000065	990190 900006	000196	000155	00018/	000911	000038	000264	000280
3.0	000313	000336	000350	000381	000/02	000/192	000449	. <i>3332</i> 38 000/69	. <i>3332</i> 04 000/81	000/00
33	990517	. <i>999</i> 550 99053/	999559 999550	999566	990581	.999420 990506	999443 990610	999402 99969 <i>1</i>	999401	999651
$\begin{vmatrix} 0.0 \\ 3.4 \end{vmatrix}$	000663	999675	999687	999608	990700	999720	990730	999740	9907/0	999758
35	000767	000776	000784	000709	000800	000807	000815	000822	000828	000835
3.6	9908/1	9908/17	000852	999858	.999800 999864	999860	990874	.999022 999870	000883	999888
$\begin{vmatrix} 3.0 \\ 3.7 \end{vmatrix}$	999892	999896	999990	9999014	9999904	999912	999915	999918	999922	999925
3.8	.999928	.999931	.999933	.999936	.999938	.999941	.999943	.999946	.999948	.999950
3.9	.999952	.999954	.999956	.999958	.999959	.999961	.999963	.999964	.9999966	.999967

Standard normal (cumulative) distribution function.

The chi-square distribution

	$\Pr(X \leq$	$(x) = \int_0^x$	$\frac{1}{\Gamma(r/2)2}$	$\frac{1}{r/2} y^{r/2-2}$	$e^{-y/2} \mathrm{d}y$			
$\Pr(X \le x)$								
r	0.01	0.025	0.05	0.95	0.975	0.99		
1	0.000	0.001	0.004	3.841	5.024	6.635		
2	0.020	0.051	0.103	5.991	7.378	9.210		
3	0.115	0.216	0.352	7.815	9.348	11.345		
4	0.297	0.484	0.711	9.488	11.143	13.277		
5	0.554	0.831	1.145	11.070	12.833	15.086		
6	0.872	1.237	1.635	12.592	14.449	16.812		
7	1.239	1.690	2.167	14.067	16.013	18.475		
8	1.646	2.180	2.733	15.507	17.535	20.090		
9	2.088	2.700	3.325	16.919	19.023	21.666		
10	2.558	3.247	3.940	18.307	20.483	23.209		
11	3.053	3.816	4.575	19.675	21.920	24.725		
12	3.571	4.404	5.226	21.026	23.337	26.217		
13	4.107	5.009	5.892	22.362	24.736	27.688		
14	4.660	5.629	6.571	23.685	26.119	29.141		
15	5.229	6.262	7.261	24.996	27.488	30.578		
16	5.812	6.908	7.962	26.296	28.845	32.000		
17	6.408	7.564	8.672	27.587	30.191	33.409		
18	7.015	8.231	9.390	28.869	31.526	34.805		
19	7.633	8.907	10.117	30.144	32.852	36.191		
20	8.260	9.591	10.851	31.410	34.170	37.566		
21	8.897	10.283	11.591	32.671	35.479	38.932		
22	9.542	10.982	12.338	33.924	36.781	40.289		
23	10.196	11.689	13.091	35.172	38.076	41.638		
24	10.856	12.401	13.848	36.415	39.364	42.980		
25	11.524	13.120	14.611	37.652	40.646	44.314		
26	12.198	13.844	15.379	38.885	41.923	45.642		
27	12.879	14.573	16.151	40.113	43.195	46.963		
28	13.565	15.308	16.928	41.337	44.461	48.278		
29	14.256	16.047	17.708	42.557	45.722	49.588		
30	14.953	16.791	18.493	43.773	46.979	50.892		