Probability and Statistics

Solution sheet 13

Solution 13.1 Using the Neyman-Pearson test with the hypothesis

$$
\begin{aligned}
& H_{0}: X \sim f(x) d x \\
& H_{1}: X \sim f(x-1) d x
\end{aligned}
$$

We have that the likelihood ratio is given by

$$
L=\frac{f(x-1)}{f(x)} .
$$

then in the case of the normal variable $L=e^{x-\frac{1}{2}}$, and we have rejection when $L>c$, i.e. $x>\ln c+\frac{1}{2}$. Then the rejection set is of the form (a, ∞).

Figure 1: Rejections sets of the normal case.
In the case of the Cauchy random variable the likelihood ration is given by $L=\frac{x^{2}+1}{x^{2}-2 x+2}$, then we have an interesting behavior as you can see in figure 2 . If you put $c=1$ then you will have a non bounded interval, but if you put $c>1$ you will have a bounded interval.

This happens because the Cauchy distribution is heavy tailed.
Solution 13.2 We have to construct the test between the hypothesis:

$$
\begin{aligned}
& H_{0}: F^{-1}(0.5)=m \\
& H_{1}: F^{-1}(0.5) \neq m .
\end{aligned}
$$

We will use the statistic $T_{n, m}=\sum_{i=1}^{m} \mathbb{1}_{\left\{X_{n} \leq m\right\}}$ and the test is going to be given by

$$
\phi(x)=1 \Leftrightarrow\left|T_{n, m}-\frac{n}{2}\right|>c(n, \alpha)
$$

where $x=\left(x_{i}\right)_{i=1}^{n}, n$ is the size of the experiment and α is the level of the test. We have that, under $H_{0}, T_{n, m}$ follows a binomial law $\operatorname{Bin}\left(n, \frac{1}{2}\right)$. Then if we define $k=\frac{n}{2}-c(n, \alpha)$, we should have, thanks to the symmetry of the Binomial coefficients:

$$
\sum_{j=0}^{k-1}\binom{n}{j} 0.5^{n} \leq \frac{\alpha}{2}<\sum_{j=0}^{k}\binom{n}{j} 0.5^{n}
$$

Figure 2: Rejections sets of the cauchy case.
and $\frac{n}{2}+c(n, \alpha)=n-k$. Take $C \subseteq \mathbb{R}^{n+1}$

$$
C:=\left\{\left(x_{1}, \ldots, x_{n}, m\right): k \leq \sum_{i=1}^{n} \mathbb{1}_{\left\{x_{i} \geq m\right\}} \leq n-k\right\}
$$

then we would like $B\left(\left(x_{1}, . ., x_{n}\right)\right)=\left\{m:\left(x_{1}, \ldots, x_{n}, m\right) \in C\right\}$ to be a confidence interval of level α of $F\left(\frac{1}{2}\right)$. Note that

$$
m \in\left[x_{(j)}, x_{(j+1)}\right) \Leftrightarrow \sum_{i=1}^{n} \mathbb{1}_{\left\{x_{i}>m\right\}}=j
$$

then $B\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\left[x_{(k)}, x_{(n-k)}\right]$. Thanks to the central limit theorem

$$
\begin{aligned}
\mathbb{P}_{m}\left(k \leq \sum_{i=1}^{n} \mathbb{1}_{\left\{x_{i}>m\right\}} \leq n-k\right) & =\mathbb{P}_{m}\left(\frac{2}{\sqrt{n}}\left(k-\frac{n}{2}\right) \leq \frac{2}{\sqrt{n}}\left(\sum_{i=1}^{n} \mathbb{1}_{\left\{x_{i}>m\right\}}-\frac{n}{2}\right) \leq \frac{2}{\sqrt{n}}\left(\frac{n}{2}-k\right)\right) \\
& \approx \phi\left(\frac{2}{\sqrt{n}}\left(\frac{n}{2}-k\right)\right)-\phi\left(\frac{2}{\sqrt{n}}\left(k-\frac{n}{2}\right)\right) \\
& =2 \phi\left(\frac{2}{\sqrt{n}}\left(\frac{n}{2}-k\right)\right)-1
\end{aligned}
$$

We want it to be bigger than 0.95 , so $k \approx \frac{n}{2}-\frac{1.96}{2} \sqrt{n} \approx\left\lfloor\frac{n}{2}\right\rfloor-\sqrt{n}$. Then

$$
B\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\left[x_{\left(\left\lfloor\frac{n}{2}\right\rfloor-\sqrt{n}\right)}, x_{\left(\left\lfloor\frac{n}{2}\right\rfloor+\sqrt{n}\right)}\right]
$$

is a confidence interval with 95% of confidence level. Then using the same notation as in Theorem 6.4 we have that

$$
\begin{aligned}
C & :=\{(x, B(x))\} \\
& =\left\{(x, m): m \in\left[x_{\left(\left\lfloor\frac{n}{2}\right\rfloor-\sqrt{n}\right)}, x_{\left(\left\lfloor\frac{n}{2}\right\rfloor+\sqrt{n}\right)}\right]\right\} .
\end{aligned}
$$

Then $A(m)=\left\{x \in \mathbb{R}^{n}: \theta \in\left[x_{\left(\left\lfloor\frac{n}{2}\right\rfloor-\sqrt{n}\right)}, x_{\left(\left\lfloor\frac{n}{2}\right\rfloor+\sqrt{n}\right)}\right]\right\}$, so thanks to the Theorem 6.4 a test to the level 0.95 is given by $\varphi_{m}(x)=\mathbb{1}_{\left\{x_{\left(\left\lfloor\frac{n}{2}\right\rfloor-\sqrt{n}\right)} \leq m \leq x_{\left(\left\lfloor\frac{n}{2}\right\rfloor+\sqrt{n}\right)}\right\}}$.

Solution 13.3

(a) $\left[\bar{X}-\frac{S_{n}}{\sqrt{n}} t_{n-1,1-\frac{\alpha}{2}}, \bar{X}+\frac{S_{n}}{\sqrt{n}} t_{n-1,1-\frac{\alpha}{2}}\right]$.
(b) The right-endpoint clearly diverges to ∞.

For the left-endpoint we set $a:=\frac{1}{n} \sum_{i=2}^{n} x_{i}$, and with the hint we obtain

$$
\begin{aligned}
S_{n}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-a\right)^{2}-\underbrace{\frac{n}{n-1}(a-\bar{x})^{2}}_{=\frac{1}{n(n-1)} x_{1}^{2}} \\
& =\underbrace{\frac{1}{n-1} \sum_{i=2}\left(x_{i}-a\right)^{2}}_{=: b}+\frac{1}{n-1}\left(x_{1}-a\right)^{2}-\frac{1}{n(n-1)} x_{1}^{2} \\
& =b+\frac{1}{n-1}\left(x_{1}^{2}-2 x_{1} a+a^{2}\right)-\frac{1}{n(n-1)} x_{1}^{2} \\
& =x_{1}^{2} \underbrace{}_{\left.=: f\left(x_{1}\right) \xrightarrow[x_{1} \rightarrow \infty]{\left(\frac{1}{n-1}-\frac{1}{n-1}-\frac{1}{n(n-1)}=\frac{1}{n}\right.} \frac{1}{n(n-1)}-\frac{2 a}{x_{1}} \frac{1}{n-1}+\frac{1}{n-1} \frac{a^{2}}{x_{1}^{2}}+\frac{b}{x_{1}^{2}}\right)} .
\end{aligned}
$$

Moreover, it holds $\bar{x}=\frac{1}{n} x_{1}+a=x_{1} \underbrace{\frac{1}{n}}_{=: g\left(x_{1}\right) \xrightarrow[x_{1} \rightarrow \infty]{\left(\frac{1}{n}+\frac{a}{x_{1}}\right)}}$. We obtain,

$$
\begin{aligned}
\bar{x}-\frac{S_{n}}{\sqrt{n}} t_{n-1,1-\frac{\alpha}{2}} & =\bar{x}\left(1-\frac{S_{n}}{\bar{x} \sqrt{n}} t_{n-1,1-\frac{\alpha}{2}}\right)=\bar{x}\left(1-\frac{x_{1} \sqrt{f\left(x_{1}\right)}}{x_{1} g\left(x_{1}\right) \sqrt{n}} t_{n-1,1-\frac{\alpha}{2}}\right) \\
& =\bar{x} \underbrace{}_{\left.\underset{x_{1} \rightarrow \infty}{ } 1-\frac{\sqrt{f\left(x_{1}\right)}}{g\left(x_{1}\right) \sqrt{n}} t_{n-1,1-\frac{\alpha}{2}}\right)}
\end{aligned}
$$

For all the levels used in practice, the t-Quantile is strictly larger than 1, i.e. the left-endpoint converges to $-\infty$ The confidence interval does not give any information anymore, every value is plausible for $\mathbb{E}[X]$.

Solution 13.4

(a) This is not a paired sample.
(b) The model is given by X_{1}, \ldots, X_{10} iid $\sim \mathcal{N}\left(\mu_{X}, \sigma^{2}\right)$ und Y_{1}, \ldots, Y_{10} iid $\sim \mathcal{N}\left(\mu_{Y}, \sigma^{2}\right)$ where μ_{X}, μ_{Y} and σ are unknown. The null and alternative hypothesis are given by

$$
H_{0}: \mu_{X}=\mu_{Y} \quad \text { und } \quad H_{A}: \mu_{X} \neq \mu_{Y}
$$

The statistic is

$$
T:=\frac{\bar{X}-\bar{Y}}{S_{\text {pool }} \sqrt{2 / 10}}
$$

and under H_{0}, it is t-distributed with 18 degrees of freedom. With a level of 5%, the null hypothesis will be rejected when $|T|>2.101$. From the data we obtain $\bar{x}=10.693, \bar{y}=6.75$ and $S_{\text {pool }}=4.255$, so $T=2.0723$ i.e. H_{0} is not rejected.

Solution 13.5

(a) We know that $T_{2 n+1}^{(1)} \sim N\left(\mu, \frac{\sigma^{2}}{2 n+1}\right)$, then

$$
\begin{aligned}
& \mathbb{P}\left(\left|T_{2 n+1}^{(1)}-\mu\right| \leq c_{n}^{(1)}\right)=0.95 \\
\Rightarrow & \mathbb{P}\left(\frac{\left|T_{2 n+1}^{(1)}-\mu\right|}{\sigma} \sqrt{2 n+1} \leq \frac{c_{n}^{(1)}}{\sigma} \sqrt{2 n+1}\right)=0.95 \\
\Rightarrow & c_{n}^{(1)}=\frac{\sigma}{\sqrt{2 n+1}} \Phi^{-1}(0.975) \approx 1.96 \frac{\sigma}{\sqrt{2 n+1}}
\end{aligned}
$$

For the second estimator, define $\tilde{X}_{k}:=X_{k}-\mu \sim N(0, \sigma)$ and $\tilde{X}_{(k)}=(\tilde{X})_{(k)}$, then $F^{-1}\left(\frac{1}{2}\right)=0$. Thanks to the example 4.6 of the Skript, we know that:

$$
\mathbb{P}\left(\sqrt{2 n+1} \tilde{X}_{(n+1)} \leq x\right) \rightarrow \Phi\left(2 F^{\prime}(0) x\right)
$$

where in our case $F^{\prime}(0)=\frac{1}{\sqrt{2 \pi} \sigma}$. Then,

$$
\begin{aligned}
\mathbb{P}\left(\left|T_{n}^{(2)}-\mu\right| \leq x\right) & \left.=\mathbb{P}\left(\sqrt{2 n+1} \tilde{X}_{(n+1)} \leq \sqrt{2 n+1} x\right)\right)+\mathbb{P}\left(\sqrt{2 n+1} \tilde{X}_{(n+1)} \geq-\sqrt{2 n+1} x\right) \\
& \approx 2 \Phi\left(\frac{\sqrt{2}}{\sqrt{\pi} \sigma} \sqrt{2 n+1} x\right)-1
\end{aligned}
$$

then if we take $c_{n}^{(2)}:=\Phi^{-1}(0.975) \frac{\sqrt{\pi}}{\sqrt{2} \sqrt{2 n+1}} \sigma$ we have what we wanted.
(b) Taking $q=\frac{\pi}{2}$ we have that:

$$
\frac{c_{q n}^{(2)}}{c_{n}^{1}} \approx \frac{\sqrt{\pi}}{\sqrt{2}} \frac{\sqrt{2 n+1}}{\sqrt{\pi n+1}} \rightarrow 1
$$

The parameter q represents how many more data I have to take with the estimator 2 to get the same order of error bounds than for the one of experiment 1.

Solution 13.6

(a) Using the fact that $I\left(\beta_{0}, \beta_{1}\right) \rightarrow+\infty$ as $\left\|\left(\beta_{0}, \beta_{1}\right)\right\| \rightarrow \infty$ (which is true since the x_{i} s are not all the same), the infimum of I is in approximated in some compact set. Since I is continuous, the infimum of I is a minimum. We can look for critical points $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$:

$$
\begin{aligned}
& \partial_{\beta_{0}} I\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=2 \sum_{i=1}^{n} \hat{\beta}_{0}+\hat{\beta}_{1} x_{i}-y_{i}=0 \\
& \partial_{\beta_{1}} I\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=2 \sum_{i=1}^{n} x_{i}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}-y_{i}\right)=0
\end{aligned}
$$

We solve the above system:

$$
n \hat{\beta}_{0}+n \bar{x} \hat{\beta}_{1}=n \bar{y} \quad \Rightarrow \quad \hat{\beta}_{0}=\bar{y}-\bar{x} \hat{\beta}_{1}
$$

and

$$
\begin{aligned}
& n \bar{x} \hat{\beta}_{0}+\left(\sum_{i=1}^{n} x_{i}^{2}\right) \hat{\beta}_{1}=\sum_{i=1}^{n} x_{i} y_{i} \\
\Rightarrow & n \bar{x}\left(\bar{y}-\bar{x} \hat{\beta}_{1}\right)+\left(\sum_{i=1}^{n} x_{i}^{2}\right) \hat{\beta}_{1}=\sum_{i=1}^{n} x_{i} y_{i} \\
\Rightarrow & \left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right) \hat{\beta}_{1}=\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y} \\
\Rightarrow & \left(\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right) \hat{\beta}_{1}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
\Rightarrow & \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
\end{aligned}
$$

(b) We apply the above formula to find $\hat{\beta}_{1}=40.89$ and $\hat{\beta}_{0}=0.55$.

Solution 13.7

(a) If we calculate the $k+1$ partial derivatives $\partial Q / \partial \beta_{0}, \cdots, \partial Q / \partial \beta_{k}$, and we set each of these derivatives equal to 0 , we obtain the following $k+1$ linear equations involving $k+1$ unknown values $\beta_{0}, \cdots, \beta_{k}$:

$$
\begin{array}{r}
\hat{\beta}_{0} n+\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}+\cdots+\hat{\beta}_{k} \sum_{i=1}^{n} x_{i}^{k}=\sum_{i=1}^{n} y_{i}, \\
\hat{\beta}_{0} \sum_{i=1}^{n} x_{i}+\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2}+\cdots+\hat{\beta}_{k} \sum_{i=1}^{n} x_{i}^{k+1}=\sum_{i=1}^{n} x_{i} y_{i} \\
\vdots \\
\hat{\beta}_{0} \sum_{i=1}^{n} x_{i}^{k}+\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{k+1}+\cdots+\hat{\beta}_{k} \sum_{i=1}^{n} x_{i}^{2 k}=\sum_{i=1}^{n} x_{i}^{k} y_{i} .
\end{array}
$$

As before, if these equations have a unique solution, that solution provides the minimum value for Q. A necessary and sufficient condition for a unique solution is that the determinant of the $(k+1) \times(k+1)$ matrix formed by the coefficients of $\hat{\beta}_{0}, \cdots, \hat{\beta}_{k}$ above is not zero.
(b) In this example, it is found that the equations are

$$
\begin{aligned}
& 10 \beta_{0}+23.3 \beta_{1}+90.37 \beta_{2}=8.1 \\
& 23.3 \beta_{0}+90.37 \beta_{1}+401.0 \beta_{2}=43.59 \\
& 90.37 \beta_{0}+401.0 \beta_{1}+1892.7 \beta_{2}=204.55
\end{aligned}
$$

The unique solution is

$$
\hat{\beta}_{0}=-0.744, \quad \hat{\beta}_{1}=0.616, \quad \hat{\beta}_{2}=0.013
$$

Hence the least squares parabola is

$$
y=-0.744+0.616 x+0.013 x^{2}
$$

Solution 13.8

(a) Just note that the coordinate i of (??) is given by

$$
y_{i}=(X \beta)_{i}+\epsilon_{i}=\sum_{k=1}^{n} X_{i k} \beta_{k}+\epsilon_{i}=x_{i} \cdot \beta+\epsilon_{i} .
$$

(b) We know that for the normal linear regression model is $\bar{\beta}:=\left(\left(X^{t} X\right)^{-1} X\right) Y$, so it's a linear model. Let's compute its expected value

$$
\begin{aligned}
\mathbb{E}(\bar{\beta}) & =\mathbb{E}\left(\left(\left(X^{t} X\right)^{-1} X^{t}\right) Y\right) \\
& =\mathbb{E}\left(\left(X^{t} X\right)^{-1} X^{t}(X \beta+\epsilon)\right) \\
& =\beta+\mathbb{E}(\epsilon)=\beta
\end{aligned}
$$

Then $\bar{\beta}$ is unbiased.
(c) We just have to compute

$$
\begin{aligned}
\operatorname{Var}(\bar{\beta}) & =\operatorname{Var}\left(\left(\left(X^{t} X\right)^{-1} X^{t}\right) Y\right) \\
& =\left(\left(X^{t} X\right)^{-1} X^{t}\right) \operatorname{Var}(Y)\left(\left(X^{t} X\right)^{-1} X^{t}\right)^{t} \\
& =\sigma^{2}\left(X^{t} X\right)^{-1}
\end{aligned}
$$

(d) We just have to compute its expected value:

$$
\begin{aligned}
\mathbb{E}(\tilde{\beta}) & =\mathbb{E}(\bar{\beta}+C Y) \\
& =\beta+C \mathbb{E}(X \beta+\epsilon) \\
& =(I+C X) \beta,
\end{aligned}
$$

given its expected value should be β for all $\beta \in \mathbb{R}^{n}$, then we have that $C X=0$.
(e) We have to compute the covariance matrix of $\tilde{\beta}$

$$
\begin{aligned}
\operatorname{Var}(\tilde{\beta}) & =\operatorname{Var}(D y)=D \operatorname{Var}(y) D^{t}=\sigma^{2} D D^{t} \\
& =\sigma^{2}\left(\left(X^{t} X\right)^{-1} X^{t}+C\right)\left(X\left(X^{t} X\right)^{-1}+C^{t}\right) \\
& =\sigma^{2}\left(\left(X^{t} X\right)^{-1} X^{t} X\left(X^{t} X\right)^{-1}+\left(X^{t} X\right)^{-1} X^{t} C^{t}+C X\left(X^{t} X\right)^{-1}+C C^{t}\right) \\
& =\sigma^{2}\left(X^{t} X\right)^{-1}+\sigma^{2}\left(X^{t} X\right)^{-1}(\underbrace{C X}_{0})^{t}+\sigma^{2} \underbrace{C X}_{0}\left(X^{t} X\right)^{-1}+\sigma^{2} C C^{t} \\
& =\underbrace{\sigma^{2}\left(X^{t} X\right)^{-1}}_{\operatorname{Var}(\hat{\beta})}+\sigma^{2} C C^{t} .
\end{aligned}
$$

To finish note that $\sigma^{2} C C^{t}$ is a positive semidefinitive matrix.

