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Solution 13.1 Using the Neyman-Pearson test with the hypothesis

H0 : X ∼ f(x)dx,
H1 : X ∼ f(x− 1)dx.

We have that the likelihood ratio is given by

L = f(x− 1)
f(x) .

then in the case of the normal variable L = ex−
1
2 , and we have rejection when L > c, i.e.x > ln c+ 1

2 .
Then the rejection set is of the form (a,∞).

x

f(x
-1

)/f
(x

)

-5 -4 -3 -2 -1 0 1 2 3 4 5

0
1

2
3

4
5

6
7

Figure 1: Rejections sets of the normal case.

In the case of the Cauchy random variable the likelihood ration is given by L = x2+1
x2−2x+2 , then

we have an interesting behavior as you can see in figure 2. If you put c = 1 then you will have a
non bounded interval, but if you put c > 1 you will have a bounded interval.

This happens because the Cauchy distribution is heavy tailed.

Solution 13.2 We have to construct the test between the hypothesis:

H0 : F−1(0.5) = m,

H1 : F−1(0.5) 6= m.

We will use the statistic Tn,m =
∑m
i=1 1{Xn≤m} and the test is going to be given by

φ(x) = 1⇔
∣∣∣Tn,m − n

2

∣∣∣ > c(n, α),

where x = (xi)ni=1, n is the size of the experiment and α is the level of the test. We have that,
under H0, Tn,m follows a binomial law Bin(n, 1

2 ). Then if we define k = n
2 − c(n, α), we should

have, thanks to the symmetry of the Binomial coefficients:
k−1∑
j=0

(
n

j

)
0.5n ≤ α

2 <

k∑
j=0

(
n

j

)
0.5n,
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Figure 2: Rejections sets of the cauchy case.

and n
2 + c(n, α) = n− k. Take C ⊆ Rn+1

C :=
{

(x1, ..., xn,m) : k ≤
n∑
i=1

1{xi≥m} ≤ n− k

}
,

then we would like B((x1, .., xn)) = {m : (x1, ..., xn,m) ∈ C} to be a confidence interval of level α
of F ( 1

2 ). Note that

m ∈ [x(j), x(j+1))⇔
n∑
i=1

1{xi>m} = j

then B((x1, ..., xn)) = [x(k), x(n−k)]. Thanks to the central limit theorem

Pm

(
k ≤

n∑
i=1

1{xi>m} ≤ n− k

)
= Pm

(
2√
n

(
k − n

2

)
≤ 2√

n

(
n∑
i=1

1{xi>m} −
n

2

)
≤ 2√

n

(n
2 − k

))

≈ φ
(

2√
n

(n
2 − k

))
− φ

(
2√
n

(
k − n

2

))
= 2φ

(
2√
n

(n
2 − k

))
− 1.

We want it to be bigger than 0.95, so k ≈ n
2 −

1.96
2
√
n ≈ bn2 c −

√
n. Then

B((x1, ..., xn)) =
[
x(bn2 c−

√
n), x(bn2 c+

√
n)

]
,

is a confidence interval with 95% of confidence level. Then using the same notation as in Theorem
6.4 we have that

C := {(x,B(x))}

=
{

(x,m) : m ∈
[
x(bn2 c−

√
n), x(bn2 c+

√
n)

]}
.

Then A(m) = {x ∈ Rn : θ ∈
[
x(bn2 c−

√
n), x(bn2 c+

√
n)

]
}, so thanks to the Theorem 6.4 a test to the

level 0.95 is given by ϕm(x) = 1{x(bn2 c−
√
n)≤m≤x(bn2 c+

√
n)}.

Solution 13.3
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(a)
[
X − Sn√

n
tn−1,1−α2 , X + Sn√

n
tn−1,1−α2

]
.

(b) The right-endpoint clearly diverges to ∞.
For the left-endpoint we set a := 1

n

∑n
i=2 xi, and with the hint we obtain

S2
n = 1

n− 1

n∑
i=1

(xi − x)2 = 1
n− 1

n∑
i=1

(xi − a)2 − n

n− 1(a− x)2︸ ︷︷ ︸
= 1
n(n−1)x

2
1

= 1
n− 1

∑
i=2

(xi − a)2

︸ ︷︷ ︸
=:b

+ 1
n− 1(x1 − a)2 − 1

n(n− 1)x
2
1

= b+ 1
n− 1(x2

1 − 2x1a+ a2)− 1
n(n− 1)x

2
1

= x2
1

(
1

n− 1 −
1

n(n− 1) −
2a
x1

1
n− 1 + 1

n− 1
a2

x2
1

+ b

x2
1

)
︸ ︷︷ ︸

=:f(x1)−−−−→
x1→∞

1
n−1−

1
n(n−1) = 1

n

.

Moreover, it holds x = 1
nx1 + a = x1

(
1
n

+ a

x1

)
︸ ︷︷ ︸

=:g(x1)−−−−→
x1→∞

1
n

. We obtain,

x− Sn√
n
tn−1,1−α2 = x

(
1− Sn

x
√
n
tn−1,1−α2

)
= x

(
1−

x1
√
f(x1)

x1g(x1)
√
n
tn−1,1−α2

)

= x

(
1−

√
f(x1)

g(x1)
√
n
tn−1,1−α2

)
︸ ︷︷ ︸
−−−−→
x1→∞

1−tn−1,1−α2

.

For all the levels used in practice, the t-Quantile is strictly larger than 1, i.e. the left-endpoint
converges to −∞ The confidence interval does not give any information anymore, every value
is plausible for E[X].

Solution 13.4

(a) This is not a paired sample.

(b) The model is given by X1, . . . , X10 iid ∼ N (µX , σ2) und Y1, . . . , Y10 iid ∼ N (µY , σ2) where
µX , µY and σ are unknown. The null and alternative hypothesis are given by

H0 : µX = µY und HA : µX 6= µY .

The statistic is
T := X̄ − Ȳ

Spool
√

2/10
and under H0, it is t-distributed with 18 degrees of freedom. With a level of 5%, the null
hypothesis will be rejected when |T | > 2.101. From the data we obtain x̄ = 10.693, ȳ = 6.75
and Spool = 4.255, so T = 2.0723 i.e. H0 is not rejected.

Solution 13.5
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(a) We know that T (1)
2n+1 ∼ N

(
µ, σ2

2n+1

)
, then

P
(
|T (1)

2n+1 − µ| ≤ c(1)
n

)
= 0.95

⇒P

(
|T (1)

2n+1 − µ|
σ

√
2n+ 1 ≤ c

(1)
n

σ

√
2n+ 1

)
= 0.95

⇒c(1)
n = σ√

2n+ 1
Φ−1(0.975) ≈ 1.96 σ√

2n+ 1
.

For the second estimator, define X̃k := Xk−µ ∼ N(0, σ) and X̃(k) = (X̃)(k), then F−1 ( 1
2
)

= 0.
Thanks to the example 4.6 of the Skript,we know that:

P
(√

2n+ 1X̃(n+1) ≤ x
)
→ Φ(2F ′(0)x),

where in our case F ′(0) = 1√
2πσ . Then,

P
(
|T (2)
n − µ| ≤ x

)
= P

(√
2n+ 1X̃(n+1) ≤

√
2n+ 1x)

)
+ P

(√
2n+ 1X̃(n+1) ≥ −

√
2n+ 1x

)
≈ 2Φ

( √
2√
πσ

√
2n+ 1x

)
− 1,

then if we take c(2)
n := Φ−1(0.975)

√
π√

2
√

2n+1σ we have what we wanted.

(b) Taking q = π
2 we have that:

c
(2)
qn

c1
n

≈
√
π√
2

√
2n+ 1√
πn+ 1

→ 1.

The parameter q represents how many more data I have to take with the estimator 2 to get
the same order of error bounds than for the one of experiment 1.

Solution 13.6

(a) Using the fact that I(β0, β1)→ +∞ as ‖(β0, β1)‖ → ∞ (which is true since the xis are not
all the same), the infimum of I is in approximated in some compact set. Since I is continuous,
the infimum of I is a minimum. We can look for critical points (β̂0, β̂1):

∂β0I(β̂0, β̂1) = 2
n∑
i=1

β̂0 + β̂1xi − yi = 0

∂β1I(β̂0, β̂1) = 2
n∑
i=1

xi(β̂0 + β̂1xi − yi) = 0.

We solve the above system:

nβ̂0 + nx̄β̂1 = nȳ ⇒ β̂0 = ȳ − x̄β̂1,
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and

nx̄β̂0 +
(

n∑
i=1

x2
i

)
β̂1 =

n∑
i=1

xiyi

⇒ nx̄(ȳ − x̄β̂1) +
(

n∑
i=1

x2
i

)
β̂1 =

n∑
i=1

xiyi

⇒

(
n∑
i=1

x2
i − nx̄2

)
β̂1 =

n∑
i=1

xiyi − nx̄ȳ

⇒

(
n∑
i=1

(xi − x̄)2

)
β̂1 =

n∑
i=1

(xi − x̄)(yi − ȳ)

⇒ β̂1 =
∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2 .

(b) We apply the above formula to find β̂1 = 40.89 and β̂0 = 0.55.

Solution 13.7

(a) If we calculate the k + 1 partial derivatives ∂Q/∂β0, · · · , ∂Q/∂βk, and we set each of these
derivatives equal to 0, we obtain the following k+ 1 linear equations involving k+ 1 unknown
values β0, · · · , βk:

β̂0n+ β̂1

n∑
i=1

xi + · · ·+ β̂k

n∑
i=1

xki =
n∑
i=1

yi,

β̂0

n∑
i=1

xi + β̂1

n∑
i=1

x2
i + · · ·+ β̂k

n∑
i=1

xk+1
i =

n∑
i=1

xiyi,

...

β̂0

n∑
i=1

xki + β̂1

n∑
i=1

xk+1
i + · · ·+ β̂k

n∑
i=1

x2k
i =

n∑
i=1

xki yi.

As before, if these equations have a unique solution, that solution provides the minimum
value for Q. A necessary and sufficient condition for a unique solution is that the determinant
of the (k + 1)× (k + 1) matrix formed by the coefficients of β̂0, · · · , β̂k above is not zero.

(b) In this example, it is found that the equations are

10β0 + 23.3β1 + 90.37β2 = 8.1,
23.3β0 + 90.37β1 + 401.0β2 = 43.59,
90.37β0 + 401.0β1 + 1892.7β2 = 204.55.

The unique solution is

β̂0 = −0.744, β̂1 = 0.616, β̂2 = 0.013.

Hence the least squares parabola is

y = −0.744 + 0.616x+ 0.013x2.
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Solution 13.8

(a) Just note that the coordinate i of (??) is given by

yi = (Xβ)i + εi =
n∑
k=1

Xikβk + εi = xi · β + εi.

(b) We know that for the normal linear regression model is β̄ := ((XtX)−1X)Y , so it’s a linear
model. Let’s compute its expected value

E
(
β̄
)

= E
(
((XtX)−1Xt)Y

)
= E

(
(XtX)−1Xt(Xβ + ε)

)
= β + E (ε) = β,

Then β̄ is unbiased.

(c) We just have to compute

Var(β̄) = Var(((XtX)−1Xt)Y )
= ((XtX)−1Xt)Var(Y )((XtX)−1Xt)t

= σ2(XtX)−1.

(d) We just have to compute its expected value:

E
(
β̃
)

= E
(
β̄ + CY

)
= β + CE (Xβ + ε)
= (I + CX)β,

given its expected value should be β for all β ∈ Rn, then we have that CX = 0.

(e) We have to compute the covariance matrix of β̃

Var(β̃) = Var(Dy) = DVar(y)Dt = σ2DDt

= σ2((XtX)−1Xt + C)(X(XtX)−1 + Ct)
= σ2((XtX)−1XtX(XtX)−1 + (XtX)−1XtCt + CX(XtX)−1 + CCt)
= σ2(XtX)−1 + σ2(XtX)−1(CX︸︷︷︸

0

)t + σ2 CX︸︷︷︸
0

(XtX)−1 + σ2CCt

= σ2(XtX)−1︸ ︷︷ ︸
Var(β̂)

+σ2CCt.

To finish note that σ2CCt is a positive semidefinitive matrix.
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