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Solution 2.1
(a) By definition of a Laplace Model:

P (An) = |An|
|Ω| = N(N − 1)(N − 2)...(N − n + 1)

Nn

=
n−1∏
j=1

(
1− j

N

)
.

(b) Take Ω = {(ωi)n
i=1 : ωi ∈ {1, ..., N}}. For the lower bound we will work with P(Ac

n).

P (Ac
n) = P ({∃j, k ∈ {1, .., n}, k < j} : ωj = ωk)

= P

 n⋃
j=1

j−1⋃
k=1
{ωk = ωj}

 ≤ n∑
j=1

j−1∑
k=1

P ({ωk = ωj})

= 1
N

n∑
j=1

(j − 1) = (n− 1)n
2N

,

using that P (Ac
n) = 1− P(An) we conclude.

For the upper bound remember that for all x > −1, ln(1 + x) ≤ x. Then,

P (An) =
n−1∏
j=1

(
1− j

N

)
=

n−1∏
j=1

exp
(

ln
(

1− j

N

))

≤
n−1∏
j=1

exp
(
− j

N

)
= exp

− n−1∑
j=1

j

N


= exp

(
−n(n− 1)

2N

)
.

(c) If P(An) < 1
2

1− n(n− 1)
2 ∗ 365 <

1
2

⇒n2 − n− 365 > 0

⇒n >
1 +
√

1461
2 ∼ 19.1.

Given that P(nmin) > 1
2 , nmin ≥ 20.

Also, we have that if

exp
(
−n(n− 1)

2 ∗ 365

)
<

1
2

⇔n2 − n− 2 ∗ 365 ln 2 > 0

⇔n >
1 +
√

2 ∗ 365 ln 2 + 1
2 ∼ 22.9
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so P (An) < 1
2 if n > 23. Then nmin ≤ 23. Given that P(A20) ∼ 0.59, P(A21) ∼ 0.55,

P(A22) =∼ 0.52 and P(A23) ∼ 0.49, we have that nmin = 23.
This problem is similar to the Birthday Problem given that we take the following assumptions:

• The number of people who were born in each day of the year (but February 29th ) is the
same.

• No one is born on February 29th.

Solution 2.2 Let Ai denote the event: “the ith coin is tossed”, and Hn denote “we obtain a head
at the nth toss”.

(a) The posterior probability that the ith coin is tossed after one toss is P(Ai|H1). By the Bayes
theorem:

P(Ai|H1) = P(H1|Ai)P(Ai)∑3
j=1 P(H1|Aj)P(Aj)

.

The prior probability of Aj is P(Aj) = 1/3 since the coin is selected uniformly at random,
thus

P(Ai|H1) = pi/3
(p1 + p2 + p3)/3 = 2pi

3 := qi.

That is
P(A1|H1) = 1/6, P(A2|H1) = 1/3, P(A3|H1) = 1/2.

(b) We have to compute the probability P(H2|H1).

P(H2|H1) =
3∑

i=1
P(Ai ∩H2|H1) =

3∑
i=1

piP(Ai|H1) = 7/12.

The second equality is due to the fact that conditioned on Ai, H1 and H2 are independent:

P(Ai ∩H2|H1) = P(Ai ∩H1 ∩H2)
P(H1) = P(H1 ∩H2|Ai)P(Ai)

P(H1)

= P(H1|Ai)P(H2|Ai)P(Ai)
P(H1) = piP(H1|Ai)P(Ai)

P(H1)
= piP(Ai|H1)

(c) Let Q(·) = P(·|B), Q is a probability measure on Ω. For all events X and Y ,

P(X|B ∩ Y ) = P(X ∩B ∩ Y )
P(B ∩ Y ) = P(X ∩ Y |B)P(B)

P(Y |B)P(B)

= Q(X ∩ Y )
Q(Y ) = Q(X|Y ).

The formula that we should prove can then be reduced to

Q(Ai|C) = Q(Ai)Q(C|Ai)∑k
j=1 Q(Aj)Q(C|Aj)

,

which is exactly the Bayes Theorem.

(d) We want to compute P(Ai|H1 ∩H2). Apply the above formula to B = H1, C = H2, Ai as
before and Q(·) = P(·|H1). The prior probabilities are qi := Q(Ai) calculated in a). Also by
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the conditional independence of H1 and H2 given Ai, we have that under Q, the probability
of getting a head from the ith coin is unchanged:

Q(H2|Ai) = P(H2|Ai ∩H1) = P(H1 ∩H2 ∩Ai)
P(Ai ∩H1)

= P(H1 ∩H2|Ai)
P(H1|Ai)

= P(H2|Ai) = pi.

The posterior probability is analogous to a), by replacing the prior probability by Q(Ai).
Thus

P(Ai|H1 ∩H2) = Q(Ai|H2) = piqi

p1q1 + p2q2 + p3q3
= piqi

7/12 .

The posterior probabilities are respectively 1/14, 2/7 and 9/14.

(e) The recursive relation is obtained as in the previous question: let qn,i denote the posterior
probability after n tosses of “the coin selected at the beginning is the ith coin”. Then for
every i, q0,i = 1/3 and

qn+1,i = piqn,i

p1qn,1 + p2qn,2 + p3qn,3
.

Solution 2.3

(a) Let k =
∑n

j=1 xj the amount of red balls taken out. Then

P (X1 = x1, ..., Xn = xn) =
m∑

i=1
P (X1 = x1, ..., Xn = xn | Urn i is chosen)P (Urn i is chosen)

=
m∑

i=1

(
2i− 1

2m

)k (2m− 2i + 1
2m

)n−k 1
m

.

We have that X1 and X2 are not independent because:

P ({X1 = 1} ∩ {X2 = 1}) =
m∑

i=1
P ({X1 = 1} ∩ {X2 = 1} | Urn i is chosen)P (Urn i is chosen)

=
m∑

i=1

(
2i− 1

2m

)2 1
m

>

(
m∑

i=1

(
2i− 1

2m

)
1
m

)2

= P (X1 = 1)P(X2 = 1).

Indeed, the first variable gives “information” about the chosen urn so it also gives information
about the second variable.

(b) By definition of conditional probabilities

P (The urn chosen is i | X1 = x1, ..., Xn = xn)

=P (The urn chosen is i, X1 = x1, ..., Xn = xn)
P (X1 = x1, ..., Xn = xn)

=
1
m

( 2i−1
2m

)k ( 2m−2i+1
2m

)n−k∑m
j=1

( 2j−1
2m

)k ( 2m−2j+1
2m

)n−k 1
m

=
( 2i−1

2m

)k ( 2m−2i+1
2m

)n−k∑m
j=1

( 2j−1
2m

)k ( 2m−2j+1
2m

)n−k
.
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i = 1 i = 2 i = 3
k = 0 0.817 0.176 0.007
k = 1 0.439 0.474 0.088
k = 2 0.088 0.474 0.439
k = 3 0.007 0.176 0.817

(c) Using the previous question, we obtain

Solution 2.4

(a) The tree can be drawn as:

Ω

A Ac

B Bc B Bc

C Cc C Cc C Cc C Cc

0.73 0.27

0.69 0.31 0.24 0.76

0.62 0.38 0.82 0.180.06 0.94 0.07 0.93

(b) The probability of being accepted, given than you are a woman who postulated at the
department I is P (C | Ac ∩ B) = 0.82. That value is bigger than the probability of being
accepted, given than you are a man who postulated at the department I, P(C | A∩B) = 0.62.
This indicates that in department I females are not disadvantaged.
The probability of being accepted, given than you are a woman who postulated to the
department is P (C | Ac ∩ Bc) = 0.07. This value is bigger than the probability of being
accepted given than you are a man who postulated at the department II P(C | A∩Bc) = 0.06.
This indicates that in department II females are neither disadvantaged.

(c) We compute the following probabilities

P[C|Ac] = P[C ∩Ac]
P[Ac] = P[C ∩Ac ∩B] + P[C ∩Ac ∩Bc]

P[Ac]

= 0.82 · 0.27 · 0.24 + 0.07 · 0.27 · 0.76
0.27 ∼ 0.25,

and

P[C|A] = P[C ∩A]
P[Ac] = P[C ∩A ∩B] + P[C ∩A ∩Bc]

P[A]

= 0.62 · 0.69 · 0.73 + 0.06 · 0.31 · 0.73
0.73 ∼ 0.45.

This shows that the percentage of women accepted are less than that of the men. This is not
explained by the gender, but much more but the fact that women apply to the department
with bigger rejection rate.
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Solution 2.5

(a) By definition e = xy ∈ KA iff x ∈ A ∧ y /∈ A or x /∈ A ∧ y ∈ A. Given that

|{x ∈ A, y /∈ A}| = |2V \{x,y}}| = 2|V |−2,

we have that:

P(xy ∈ KA) = P({x ∈ A ∧ y /∈ A} ∪ {x /∈ A ∧ y ∈ A})
= P({x ∈ A ∧ y /∈ A}) + P({x ∈ A ∧ y /∈ A})

= 2|V |−2

2|V |
+ 2|V |−2

2|V |
= 1

2 ,

where the last part follows from the symmetry of the problem.

(b) Since |KA| =
∑

k∈K 1k∈KA
, we have by linearity, and the previous question

E [|KA|] = E

[∑
k∈K

1k∈KA

]
= |K|2 .

(c) Given that the expectation of |KA| is equal to |K|2 there should be a value of A so that
|KA| ≥ |K|2 . If it is not the case, it holds

E [|KA|] =
∑
k∈N

kP(|KA| = k)

=
d |K|

2 −1e∑
k=1

kP(|KA| = k)

≤
⌈
|K|
2 − 1

⌉ d |K|
2 −1e∑
k=1

P(|KA| = k)

=
⌈
|K|
2 − 1

⌉
<
|K|
2 ,

where we used dxe := inf{n ∈ N : x ≤ n}, the largest integer smaller than x: it holds⌈
|K|

2 − 1
⌉

< |K|
2 .

Solution 2.6

(a) Let Ω = {1, 2, 3}× {2, 3}. Then, for i ∈ {1, 2, 3}, Bi = {i}× {2, 3} and A2 = {1, 3}× {2} and
A3 = {1, 2} × {3}. We posit the following probabilities:
P(B1) = P(B2) = P(B3) = 1

3 .
P(A2|B1) = P(A3|B1) = 1

2 .
P(A2|B2) = 0 P(A3|B2) = 1.
P(A2|B3) = 1 P(A3|B3) = 0.

(b) We compute, with Bayes’ formula

P(B1|A2) = P(A2|B1)P(B1)
P(A2|B1)P(B1) + P(A2|B2)P(B2) + P(A2|B3)P(B3)

=
1
2

1
3

1
2

1
3 + 0 1

3 + 1 1
3

=
1
6
3
6

= 1
3 .
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P(B1|A3) = P(A3|B1)P(B1)
P(A3|B1)P(B1) + P(A3|B2)P(B2) + P(A3|B3)P(B3)

=
1
2

1
3

1
2

1
3 + 1 1

3 + 0 1
3

=
1
6
3
6

= 1
3 .

It holds that P(B1 | A2) = P(B1 | A3) = P(B1).

(c) You should pick the remaining door, because P(B1 | Aj) = 1
3 , and P(Bl | Aj) = 2

3 where
1 6= l 6= j. You did not obtain additional information about door No. 1, but you obtained
additional information on the last door.
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