Probability and Statistics

Solution sheet 2

Solution 2.1

(a) By definition of a Laplace Model:

$$
\begin{aligned}
\mathbb{P}\left(A_{n}\right) & =\frac{\left|A_{n}\right|}{|\Omega|}=\frac{N(N-1)(N-2) \ldots(N-n+1)}{N^{n}} \\
& =\prod_{j=1}^{n-1}\left(1-\frac{j}{N}\right) .
\end{aligned}
$$

(b) Take $\Omega=\left\{\left(\omega_{i}\right)_{i=1}^{n}: \omega_{i} \in\{1, \ldots, N\}\right\}$. For the lower bound we will work with $\mathbb{P}\left(A_{n}^{c}\right)$.

$$
\begin{aligned}
\mathbb{P}\left(A_{n}^{c}\right) & =\mathbb{P}\left(\{\exists j, k \in\{1, . ., n\}, k<j\}: \omega_{j}=\omega_{k}\right) \\
& =\mathbb{P}\left(\bigcup_{j=1}^{n} \bigcup_{k=1}^{j-1}\left\{\omega_{k}=\omega_{j}\right\}\right) \leq \sum_{j=1}^{n} \sum_{k=1}^{j-1} \mathbb{P}\left(\left\{\omega_{k}=\omega_{j}\right\}\right) \\
& =\frac{1}{N} \sum_{j=1}^{n}(j-1)=\frac{(n-1) n}{2 N},
\end{aligned}
$$

using that $\mathbb{P}\left(A_{n}^{c}\right)=1-\mathbb{P}\left(A_{n}\right)$ we conclude.
For the upper bound remember that for all $x>-1, \ln (1+x) \leq x$. Then,

$$
\begin{aligned}
\mathbb{P}\left(A_{n}\right) & =\prod_{j=1}^{n-1}\left(1-\frac{j}{N}\right)=\prod_{j=1}^{n-1} \exp \left(\ln \left(1-\frac{j}{N}\right)\right) \\
& \leq \prod_{j=1}^{n-1} \exp \left(-\frac{j}{N}\right)=\exp \left(-\sum_{j=1}^{n-1} \frac{j}{N}\right) \\
& =\exp \left(-\frac{n(n-1)}{2 N}\right)
\end{aligned}
$$

(c) If $\mathbb{P}\left(A_{n}\right)<\frac{1}{2}$

$$
\begin{aligned}
& 1-\frac{n(n-1)}{2 * 365}<\frac{1}{2} \\
\Rightarrow & n^{2}-n-365>0 \\
\Rightarrow & n>\frac{1+\sqrt{1461}}{2} \sim 19.1 .
\end{aligned}
$$

Given that $\mathbb{P}\left(n_{\text {min }}\right)>\frac{1}{2}, n_{\text {min }} \geq 20$.
Also, we have that if

$$
\begin{aligned}
& \exp \left(-\frac{n(n-1)}{2 * 365}\right)<\frac{1}{2} \\
\Leftrightarrow & n^{2}-n-2 * 365 \ln 2>0 \\
\Leftrightarrow & n>\frac{1+\sqrt{2 * 365 \ln 2+1}}{2} \sim 22.9
\end{aligned}
$$

so $P\left(A_{n}\right)<\frac{1}{2}$ if $n>23$. Then $n_{\min } \leq 23$. Given that $\mathbb{P}\left(A_{20}\right) \sim 0.59, \mathbb{P}\left(A_{21}\right) \sim 0.55$, $\mathbb{P}\left(A_{22}\right)=\sim 0.52$ and $\mathbb{P}\left(A_{23}\right) \sim 0.49$, we have that $n_{\min }=23$.

This problem is similar to the Birthday Problem given that we take the following assumptions:

- The number of people who were born in each day of the year (but February 29th) is the same.
- No one is born on February 29th.

Solution 2.2 Let A_{i} denote the event: "the i th coin is tossed", and H_{n} denote "we obtain a head at the nth toss".
(a) The posterior probability that the i th coin is tossed after one toss is $\mathbb{P}\left(A_{i} \mid H_{1}\right)$. By the Bayes theorem:

$$
\mathbb{P}\left(A_{i} \mid H_{1}\right)=\frac{\mathbb{P}\left(H_{1} \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}{\sum_{j=1}^{3} \mathbb{P}\left(H_{1} \mid A_{j}\right) \mathbb{P}\left(A_{j}\right)}
$$

The prior probability of A_{j} is $\mathbb{P}\left(A_{j}\right)=1 / 3$ since the coin is selected uniformly at random, thus

$$
\mathbb{P}\left(A_{i} \mid H_{1}\right)=\frac{p_{i} / 3}{\left(p_{1}+p_{2}+p_{3}\right) / 3}=\frac{2 p_{i}}{3}:=q_{i}
$$

That is

$$
\mathbb{P}\left(A_{1} \mid H_{1}\right)=1 / 6, \mathbb{P}\left(A_{2} \mid H_{1}\right)=1 / 3, \mathbb{P}\left(A_{3} \mid H_{1}\right)=1 / 2 .
$$

(b) We have to compute the probability $\mathbb{P}\left(H_{2} \mid H_{1}\right)$.

$$
\mathbb{P}\left(H_{2} \mid H_{1}\right)=\sum_{i=1}^{3} \mathbb{P}\left(A_{i} \cap H_{2} \mid H_{1}\right)=\sum_{i=1}^{3} p_{i} \mathbb{P}\left(A_{i} \mid H_{1}\right)=7 / 12 .
$$

The second equality is due to the fact that conditioned on A_{i}, H_{1} and H_{2} are independent:

$$
\begin{aligned}
\mathbb{P}\left(A_{i} \cap H_{2} \mid H_{1}\right) & =\frac{\mathbb{P}\left(A_{i} \cap H_{1} \cap H_{2}\right)}{\mathbb{P}\left(H_{1}\right)}=\frac{\mathbb{P}\left(H_{1} \cap H_{2} \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}{\mathbb{P}\left(H_{1}\right)} \\
& =\frac{\mathbb{P}\left(H_{1} \mid A_{i}\right) \mathbb{P}\left(H_{2} \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}{\mathbb{P}\left(H_{1}\right)}=\frac{p_{i} \mathbb{P}\left(H_{1} \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}{\mathbb{P}\left(H_{1}\right)} \\
& =p_{i} \mathbb{P}\left(A_{i} \mid H_{1}\right)
\end{aligned}
$$

(c) Let $\mathbb{Q}(\cdot)=\mathbb{P}(\cdot \mid B), \mathbb{Q}$ is a probability measure on Ω. For all events X and Y,

$$
\begin{aligned}
\mathbb{P}(X \mid B \cap Y) & =\frac{\mathbb{P}(X \cap B \cap Y)}{\mathbb{P}(B \cap Y)}=\frac{\mathbb{P}(X \cap Y \mid B) \mathbb{P}(B)}{\mathbb{P}(Y \mid B) \mathbb{P}(B)} \\
& =\frac{\mathbb{Q}(X \cap Y)}{\mathbb{Q}(Y)}=\mathbb{Q}(X \mid Y)
\end{aligned}
$$

The formula that we should prove can then be reduced to

$$
\mathbb{Q}\left(A_{i} \mid C\right)=\frac{\mathbb{Q}\left(A_{i}\right) \mathbb{Q}\left(C \mid A_{i}\right)}{\sum_{j=1}^{k} \mathbb{Q}\left(A_{j}\right) \mathbb{Q}\left(C \mid A_{j}\right)},
$$

which is exactly the Bayes Theorem.
(d) We want to compute $\mathbb{P}\left(A_{i} \mid H_{1} \cap H_{2}\right)$. Apply the above formula to $B=H_{1}, C=H_{2}, A_{i}$ as before and $\mathbb{Q}(\cdot)=\mathbb{P}\left(\cdot \mid H_{1}\right)$. The prior probabilities are $q_{i}:=\mathbb{Q}\left(A_{i}\right)$ calculated in a). Also by
the conditional independence of H_{1} and H_{2} given A_{i}, we have that under \mathbb{Q}, the probability of getting a head from the i th coin is unchanged:

$$
\begin{aligned}
\mathbb{Q}\left(H_{2} \mid A_{i}\right) & =\mathbb{P}\left(H_{2} \mid A_{i} \cap H_{1}\right)=\frac{\mathbb{P}\left(H_{1} \cap H_{2} \cap A_{i}\right)}{\mathbb{P}\left(A_{i} \cap H_{1}\right)} \\
& =\frac{\mathbb{P}\left(H_{1} \cap H_{2} \mid A_{i}\right)}{\mathbb{P}\left(H_{1} \mid A_{i}\right)}=\mathbb{P}\left(H_{2} \mid A_{i}\right)=p_{i}
\end{aligned}
$$

The posterior probability is analogous to a), by replacing the prior probability by $\mathbb{Q}\left(A_{i}\right)$. Thus

$$
\mathbb{P}\left(A_{i} \mid H_{1} \cap H_{2}\right)=\mathbb{Q}\left(A_{i} \mid H_{2}\right)=\frac{p_{i} q_{i}}{p_{1} q_{1}+p_{2} q_{2}+p_{3} q_{3}}=\frac{p_{i} q_{i}}{7 / 12}
$$

The posterior probabilities are respectively $1 / 14,2 / 7$ and $9 / 14$.
(e) The recursive relation is obtained as in the previous question: let $q_{n, i}$ denote the posterior probability after n tosses of "the coin selected at the beginning is the i th coin". Then for every $i, q_{0, i}=1 / 3$ and

$$
q_{n+1, i}=\frac{p_{i} q_{n, i}}{p_{1} q_{n, 1}+p_{2} q_{n, 2}+p_{3} q_{n, 3}}
$$

Solution 2.3

(a) Let $k=\sum_{j=1}^{n} x_{j}$ the amount of red balls taken out. Then

$$
\begin{aligned}
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) & =\sum_{i=1}^{m} \mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid \operatorname{Urn} i \text { is chosen }\right) \mathbb{P}(\operatorname{Urn} i \text { is chosen }) \\
& =\sum_{i=1}^{m}\left(\frac{2 i-1}{2 m}\right)^{k}\left(\frac{2 m-2 i+1}{2 m}\right)^{n-k} \frac{1}{m} .
\end{aligned}
$$

We have that X_{1} and X_{2} are not independent because:

$$
\begin{aligned}
\mathbb{P}\left(\left\{X_{1}=1\right\} \cap\left\{X_{2}=1\right\}\right) & \left.=\sum_{i=1}^{m} \mathbb{P}\left(\left\{X_{1}=1\right\} \cap\left\{X_{2}=1\right\} \mid \text { Urn } i \text { is chosen }\right) \mathbb{P} \text { (Urn } i \text { is chosen }\right) \\
& =\sum_{i=1}^{m}\left(\frac{2 i-1}{2 m}\right)^{2} \frac{1}{m} \\
& >\left(\sum_{i=1}^{m}\left(\frac{2 i-1}{2 m}\right) \frac{1}{m}\right)^{2}=\mathbb{P}\left(X_{1}=1\right) \mathbb{P}\left(X_{2}=1\right) .
\end{aligned}
$$

Indeed, the first variable gives "information" about the chosen urn so it also gives information about the second variable.
(b) By definition of conditional probabilities

$$
\begin{aligned}
& \mathbb{P}\left(\text { The urn chosen is } i \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) \\
= & \frac{\mathbb{P}\left(\text { The urn chosen is } i, X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)}{\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)} \\
= & \frac{\frac{1}{m}\left(\frac{2 i-1}{2 m}\right)^{k}\left(\frac{2 m-2 i+1}{2 m}\right)^{n-k}}{\sum_{j=1}^{m}\left(\frac{2 j-1}{2 m}\right)^{k}\left(\frac{2 m-2 j+1}{2 m}\right)^{n-k} \frac{1}{m}} \\
= & \frac{\left(\frac{2 i-1}{2 m}\right)^{k}\left(\frac{2 m-2 i+1}{2 m}\right)^{n-k}}{\sum_{j=1}^{m}\left(\frac{2 j-1}{2 m}\right)^{k}\left(\frac{2 m-2 j+1}{2 m}\right)^{n-k}} .
\end{aligned}
$$

	$i=1$	$i=2$	$i=3$
$k=0$	0.817	0.176	0.007
$k=1$	0.439	0.474	0.088
$k=2$	0.088	0.474	0.439
$k=3$	0.007	0.176	0.817

(c) Using the previous question, we obtain

Solution 2.4

(a) The tree can be drawn as:

(b) The probability of being accepted, given than you are a woman who postulated at the department I is $P\left(C \mid A^{c} \cap B\right)=0.82$. That value is bigger than the probability of being accepted, given than you are a man who postulated at the department I, $\mathbb{P}(C \mid A \cap B)=0.62$. This indicates that in department I females are not disadvantaged.
The probability of being accepted, given than you are a woman who postulated to the department is $P\left(C \mid A^{c} \cap B^{c}\right)=0.07$. This value is bigger than the probability of being accepted given than you are a man who postulated at the department II $\mathbb{P}\left(C \mid A \cap B^{c}\right)=0.06$. This indicates that in department II females are neither disadvantaged.
(c) We compute the following probabilities

$$
\begin{aligned}
\mathbb{P}\left[C \mid A^{c}\right] & =\frac{\mathbb{P}\left[C \cap A^{c}\right]}{\mathbb{P}\left[A^{c}\right]}=\frac{\mathbb{P}\left[C \cap A^{c} \cap B\right]+\mathbb{P}\left[C \cap A^{c} \cap B^{c}\right]}{\mathbb{P}\left[A^{c}\right]} \\
& =\frac{0.82 \cdot 0.27 \cdot 0.24+0.07 \cdot 0.27 \cdot 0.76}{0.27} \sim 0.25
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbb{P}[C \mid A] & =\frac{\mathbb{P}[C \cap A]}{\mathbb{P}\left[A^{c}\right]}=\frac{\mathbb{P}[C \cap A \cap B]+\mathbb{P}\left[C \cap A \cap B^{c}\right]}{\mathbb{P}[A]} \\
& =\frac{0.62 \cdot 0.69 \cdot 0.73+0.06 \cdot 0.31 \cdot 0.73}{0.73} \sim 0.45
\end{aligned}
$$

This shows that the percentage of women accepted are less than that of the men. This is not explained by the gender, but much more but the fact that women apply to the department with bigger rejection rate.

Solution 2.5

(a) By definition $e=x y \in K_{A}$ iff $x \in A \wedge y \notin A$ or $x \notin A \wedge y \in A$. Given that

$$
|\{x \in A, y \notin A\}|=\left|2^{V \backslash\{x, y\}\}}\right|=2^{|V|-2}
$$

we have that:

$$
\begin{aligned}
\mathbb{P}\left(x y \in K_{A}\right) & =\mathbb{P}(\{x \in A \wedge y \notin A\} \cup\{x \notin A \wedge y \in A\}) \\
& =\mathbb{P}(\{x \in A \wedge y \notin A\})+\mathbb{P}(\{x \in A \wedge y \notin A\}) \\
& =\frac{2^{|V|-2}}{2^{|V|}}+\frac{2^{|V|-2}}{2^{|V|}}=\frac{1}{2}
\end{aligned}
$$

where the last part follows from the symmetry of the problem.
(b) Since $\left|K_{A}\right|=\sum_{k \in K} \mathbb{1}_{k \in K_{A}}$, we have by linearity, and the previous question

$$
\mathbb{E}\left[\left|K_{A}\right|\right]=\mathbb{E}\left[\sum_{k \in K} \mathbb{1}_{k \in K_{A}}\right]=\frac{|K|}{2} .
$$

(c) Given that the expectation of $\left|K_{A}\right|$ is equal to $\frac{|K|}{2}$ there should be a value of A so that $\left|K_{A}\right| \geq \frac{|K|}{2}$. If it is not the case, it holds

$$
\begin{aligned}
\mathbb{E}\left[\left|K_{A}\right|\right] & =\sum_{k \in \mathbb{N}} k \mathbb{P}\left(\left|K_{A}\right|=k\right) \\
& =\sum_{k=1}^{\left\lceil\frac{|K|}{2}-1\right\rceil} k \mathbb{P}\left(\left|K_{A}\right|=k\right) \\
& \leq\left\lceil\frac{|K|}{2}-1\right\rceil \sum_{k=1}^{\left\lceil\frac{|K|}{2}-1\right\rceil} \mathbb{P}\left(\left|K_{A}\right|=k\right) \\
& =\left\lceil\frac{|K|}{2}-1\right\rceil<\frac{|K|}{2}
\end{aligned}
$$

where we used $\lceil x\rceil:=\inf \{n \in \mathbb{N}: x \leq n\}$, the largest integer smaller than x : it holds $\left\lceil\frac{|K|}{2}-1\right\rceil<\frac{|K|}{2}$.

Solution 2.6

(a) Let $\Omega=\{1,2,3\} \times\{2,3\}$. Then, for $i \in\{1,2,3\}, B_{i}=\{i\} \times\{2,3\}$ and $A_{2}=\{1,3\} \times\{2\}$ and $A_{3}=\{1,2\} \times\{3\}$. We posit the following probabilities:
$\mathbb{P}\left(B_{1}\right)=\mathbb{P}\left(B_{2}\right)=\mathbb{P}\left(B_{3}\right)=\frac{1}{3}$.
$\mathbb{P}\left(A_{2} \mid B_{1}\right)=\mathbb{P}\left(A_{3} \mid B_{1}\right)=\frac{1}{2}$.
$\mathbb{P}\left(A_{2} \mid B_{2}\right)=0 \quad \mathbb{P}\left(A_{3} \mid B_{2}\right)=1$.
$\mathbb{P}\left(A_{2} \mid B_{3}\right)=1 \quad \mathbb{P}\left(A_{3} \mid B_{3}\right)=0$.
(b) We compute, with Bayes' formula

$$
\begin{aligned}
\mathbb{P}\left(B_{1} \mid A_{2}\right) & =\frac{\mathbb{P}\left(A_{2} \mid B_{1}\right) \mathbb{P}\left(B_{1}\right)}{\mathbb{P}\left(A_{2} \mid B_{1}\right) \mathbb{P}\left(B_{1}\right)+\mathbb{P}\left(A_{2} \mid B_{2}\right) \mathbb{P}\left(B_{2}\right)+\mathbb{P}\left(A_{2} \mid B_{3}\right) \mathbb{P}\left(B_{3}\right)} \\
& =\frac{\frac{1}{2} \frac{1}{3}}{\frac{1}{2} \frac{1}{3}+0 \frac{1}{3}+1 \frac{1}{3}}=\frac{\frac{1}{6}}{\frac{3}{6}}=\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{P}\left(B_{1} \mid A_{3}\right) & =\frac{\mathbb{P}\left(A_{3} \mid B_{1}\right) \mathbb{P}\left(B_{1}\right)}{\mathbb{P}\left(A_{3} \mid B_{1}\right) \mathbb{P}\left(B_{1}\right)+\mathbb{P}\left(A_{3} \mid B_{2}\right) \mathbb{P}\left(B_{2}\right)+\mathbb{P}\left(A_{3} \mid B_{3}\right) \mathbb{P}\left(B_{3}\right)} \\
& =\frac{\frac{1}{2} \frac{1}{3}}{\frac{1}{2} \frac{1}{3}+1 \frac{1}{3}+0 \frac{1}{3}}=\frac{\frac{1}{6}}{\frac{3}{6}}=\frac{1}{3}
\end{aligned}
$$

It holds that $\mathbb{P}\left(B_{1} \mid A_{2}\right)=\mathbb{P}\left(B_{1} \mid A_{3}\right)=\mathbb{P}\left(B_{1}\right)$.
(c) You should pick the remaining door, because $\mathbb{P}\left(B_{1} \mid A_{j}\right)=\frac{1}{3}$, and $\mathbb{P}\left(B_{l} \mid A_{j}\right)=\frac{2}{3}$ where $1 \neq l \neq j$. You did not obtain additional information about door No. 1, but you obtained additional information on the last door.

