Probability and Statistics

Solution sheet 4

Solution 4.1

(a) Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ so that $A_{n} \in \bigcap_{i \in I} \mathcal{A}_{i}$ then:

- For all $i, A_{1} \in \mathcal{A}_{i}$, so $A_{1}^{c} \in \mathcal{A}_{i}$. Then $A_{1}^{c} \in \bigcap_{i \in I} \mathcal{A}_{i}$.
- For all $i, A_{n} \in \mathcal{A}_{i}$, so $\bigcup_{n \in \mathbb{N}} A_{n} \in \mathcal{A}_{i}$. Then $\bigcup_{n \in \mathbb{N}} A_{n} \in \bigcap_{i \in I} \mathcal{A}_{i}$.
- For all $i, \Omega \in \mathcal{A}_{i}$, Then $\Omega \in \bigcap_{i \in I} \mathcal{A}_{i}$.

Then $\bigcap_{i \in I} \mathcal{A}_{i}$ is a σ-algebra.
(b) \Leftarrow It is clear that if $\mathcal{A}_{1} \subseteq \mathcal{A}_{2}$, then $\mathcal{A}_{1} \cup \mathcal{A}_{2}=\mathcal{A}_{2}$ and it is a σ-algebra. Idem if $\mathcal{A}_{2} \subseteq \mathcal{A}_{1}$.
\Rightarrow Note first that for $A, B \subseteq \Omega$, we have

$$
A \Delta B=(A \cup B) \cap(A \cap B)^{c}
$$

So if A and B belong to a σ-algebra, their symmetric difference does too.
Now, if $\mathcal{A}_{1} \subsetneq \mathcal{A}_{2}$ and $\mathcal{A}_{2} \subsetneq \mathcal{A}_{1}$, then there exists $A_{1} \in \mathcal{A}_{1} \backslash \mathcal{A}_{2}$ and $A_{2} \in \mathcal{A}_{2} \backslash \mathcal{A}_{1}$. Note that $A_{1} \Delta A_{2} \notin \mathcal{A}_{i}$, because, if $A_{1} \Delta A_{2} \in \mathcal{A}_{i}$, then for $i \in\{1,2\}$

$$
A_{i} \Delta\left(A_{1} \Delta A_{2}\right) \in \mathcal{A}_{i} \quad \text { which implies } \quad A_{j} \in \mathcal{A}_{i} \quad j \neq i
$$

Then $\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is not a σ-algebra because $A_{1} \Delta A_{2} \notin \mathcal{A}_{1} \cup \mathcal{A}_{2}$ even though $A_{1}, A_{2} \in \mathcal{A}_{1} \cup \mathcal{A}_{2}$.
(c) (i) $\bigcap_{i \in \mathbb{N}} A_{i}^{c} \in \mathcal{A}$. For $n \in \mathbb{N}$, it holds, $\bigcap_{i \in \mathbb{N}} A_{i}^{c} \notin \sigma\left(\left\{A_{k}: k \geq n\right\}\right)$.

This implies $\bigcap_{i \in \mathbb{N}} A_{i}^{c} \notin \mathcal{A}_{\infty}$.
(ii) $\bigcap_{n \in \mathbb{N}} \bigcup_{i \geq n} A_{i} \in \mathcal{A}$. For $m \in \mathbb{N}, \bigcap_{n \in \mathbb{N}} \bigcup_{i \geq n} A_{i} \in \sigma\left(\left\{A_{k}: k \geq m\right\}\right)$. Then $\bigcap_{n \in \mathbb{N}} \bigcup_{i \geq n} A_{i} \in \mathcal{A}_{\infty}$.
(iii) $\bigcup_{n \in \mathbb{N}} \bigcap_{i \geq n} A_{i}^{c} \in \mathcal{A}$. For $m \in \mathbb{N}, \bigcup_{n \in \mathbb{N}} \bigcap_{i \geq n} A_{i}^{c} \in \sigma\left(\left\{A_{k}: k \geq m\right\}\right)$. Then $\bigcup_{n \in \mathbb{N}} \bigcap_{i \geq n} A_{i}^{c} \in \mathcal{A}_{\infty}$.
(iv) $\bigcup_{j_{1}<j_{2} \in \mathbb{N}} A_{j_{2}} \cap A_{j_{1}} \cap \bigcap_{\substack{i \in \mathbb{N} \\ j_{1} \neq i \neq j_{2}}} A_{j}^{c} \in \mathcal{A}$. It holds that $\bigcup_{j_{1}<j_{2} \in \mathbb{N}} A_{j_{2}} \cap A_{j_{1}} \cap \bigcap_{\substack{i \in \mathbb{N} \\ j_{1} \neq i \neq j_{2}}} A_{j}^{c}$ does not belong to $\sigma\left(\left\{A_{k}: k \geq 2\right\}\right)$, so it does not belong to \mathcal{A}_{∞}.
(v) $\bigcup_{n \in \mathbb{N}} \bigcup_{j_{1}<j_{2}<\ldots<j_{2 n+1}}\left(\bigcap_{i=1}^{2 n+1} A_{j_{i}} \cap \bigcap_{\substack{i \in \mathbb{N} \\ n \neq j_{k}}} A_{i}^{c}\right) \in \mathcal{A}$. Similarly
does not belong to $\sigma\left(\left\{A_{k}: k \geq 2\right\}\right)$, so it does not belong to \mathcal{A}_{∞}.

Solution 4.2

(a) Take $([0,1], \mathcal{B}(0,1), \lambda)$ as a probability space, where $\mathcal{B}[0,1]$ is the Borel σ-algebra on $[0,1]$. Let U be the identity function. U is distributed as an uniform random variable on $(0,1)$ under λ. Define

$$
A_{n}:=\left\{x \in(0,1): U(x) \in\left[0, \frac{1}{n}\right]\right\} .
$$

Then we have that $\mathbb{P}\left(A_{n}\right)=\frac{1}{n}$, so $\sum_{n \in \mathbb{N}} \mathbb{P}\left(A_{n}\right)=\infty$. Additionally $x \in \bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_{k}$ if and only if $x=0$. Therefore, $\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_{k}\right)=0$.
(b) (i) We will use Borel-Cantelli's Lemma. Define $A_{n}^{\alpha}:=\left\{U_{n}<n^{-\alpha}\right\}$, then:

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}^{\alpha}\right)=\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}<\infty
$$

and by Borel-Cantelli lemma $\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} \bigcup_{j \geq n} A_{j}^{\alpha}\right)=0$. Thus

$$
\mathbb{P}\left(\bigcup_{\substack{\alpha>1 \\ \alpha \in \mathbb{Q}}} \bigcap_{n \in \mathbb{N}} \bigcup_{j \geq n} A_{j}^{\alpha}\right)=0
$$

Let $\omega \in \Omega$ so that there exists $\alpha(\omega)$ for which $\lim \inf n^{\alpha(\omega)} U_{n}(\omega)<\infty$. Then take $1<\tilde{\alpha}(\omega)<\alpha(\omega)$ with $\tilde{\alpha}(\omega) \in \mathbb{Q}$. We have that $\lim \inf n^{\tilde{\alpha}(\omega)} U_{n}(\omega)=0$. Then for all $n \in \mathbb{N}$ there exists $m(\omega)>n$ so that $m^{\tilde{\alpha}} U_{m}(\omega)<1$. Thus, $\omega \in \bigcup_{\alpha \in \mathbb{Q}}^{\alpha>1} \bigcap_{n \in \mathbb{N}} \bigcup_{j \geq n} A_{j}^{\alpha}$. Finally we have that

$$
\left\{(\exists \alpha>1) \liminf n^{\alpha} U_{n} \in \mathbb{R}\right\} \subseteq \bigcup_{\substack{\alpha>1 \\ \alpha \in \mathbb{Q}}} \bigcap_{n \in \mathbb{N}} \bigcup_{j \geq n} A_{j}^{\alpha}
$$

This implies

$$
\mathbb{P}\left((\exists \alpha>1) \lim \inf n^{\alpha} U_{n} \in \mathbb{R}\right)=0
$$

(ii) We use Borel-Cantelli's Lemma. Define $A_{n}=\left\{U_{n} \leq n^{-1}\right\}$, it is clear that the $\left(A_{n}\right)_{n \in \mathbb{N}}$ are independent. We have $\mathbb{P}\left(A_{n}\right)=\frac{1}{n}$, then $\sum_{n \in \mathbb{N}} \mathbb{P}\left(A_{n}\right)=\infty$. By Borel-Cantelli

$$
\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_{k}\right)=1>0
$$

Additionally, if $\omega \in \bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_{k}$, for all $n \in \mathbb{N}$ there exists $k_{n}(\omega)>n$ such that $k_{n}(\omega) U_{k_{n}(\omega)} \leq 1$. Thus, $0 \leq \lim \inf n U_{n} \leq 1$. To conclude,

$$
\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_{k} \subseteq\left\{\liminf n U_{n} \in \mathbb{R}\right\} \quad \text { and } \quad \mathbb{P}\left(\liminf n U_{n} \in \mathbb{R}\right)=1>0
$$

Solution 4.3

(a) The projection $X_{n}(\omega):\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}, \ldots\right) \mapsto \omega_{n}$ is measurable, so, for $k \in \mathbb{N}$, the random variable $\sum_{n=1}^{k} \frac{X_{n}}{3^{n}}$ is measurable (as a sum of random variables). Given that

$$
\sum_{n=1}^{k} \frac{X_{n}}{3^{n}} \xrightarrow{k \rightarrow \infty} X, \text { point-wise, }
$$

X is measurable.
(b) The cumulative function is continuous in x if and only if $\mathbb{P}[\{X(\omega)=x\}]=0$. This is clear in this case.
(c) Define $K_{1}=\left(\frac{1}{3}, \frac{2}{3}\right)$. It holds that $K_{1} \cap X\left(\{0,2\}^{\mathbb{N}}\right)=\emptyset$. Indeed, if $X_{1}(\omega)=0$, then we have

$$
X(\omega)=\sum_{n=2}^{\infty} \frac{X_{n}(\omega)}{3^{n}} \leq \frac{2}{9} \frac{1}{1-\frac{1}{3}}=\frac{1}{3}
$$

and if $X_{1}(\omega)=2$ then

$$
X(\omega)=\frac{2}{3}+\sum_{n=2}^{\infty} \frac{X_{n}(\omega)}{3^{n}} \geq \frac{2}{3}
$$

Define $L_{1}=[0,1] \backslash K_{1}, a_{1}^{(1)}=0$ and $a_{2}^{(1)}=2 / 3$, then we know that $L_{1}=\bigcup_{i=1}^{2^{1}}\left[a_{i}^{(1)}, a_{i}^{(1)}+\left(\frac{1}{3}\right)^{1}\right]$. Given $L_{n-1}=\bigcup_{i=1}^{2^{n-1}}\left[a_{i}^{(n-1)}, a_{i}^{(n-1)}+\left(\frac{1}{3}\right)^{n-1}\right], a_{i}^{(n-1)}$ for $i \in\left\{1, \ldots, 2^{n-1}\right\}$, we define K_{n}, $\left(a_{i}^{(n)}\right)_{i \in\left\{1, \ldots, 2^{n}\right\}}$ as follows

$$
\begin{aligned}
K_{n} & =\bigcup_{i=1}^{2^{n-1}}\left(a_{i}^{(n-1)}+\left(\frac{1}{3}\right)^{n}, a_{i}^{(n-1)}+2\left(\frac{1}{3}\right)^{n}\right) \\
a_{2 i-1}^{(n)} & =a_{i}^{(n-1)} \\
a_{2 i}^{(n)} & =a_{i}^{(n-1)}+2\left(\frac{1}{3}\right)^{n}
\end{aligned}
$$

Then $L_{n}=L_{n-1} \backslash K_{n}$.
We claim the following
(i) K_{n} is well defined.
(ii) $K_{n} \cap X\left(\{0,2\}^{\mathbb{N}}\right)=\emptyset$, so $X\left(\{0,2\}^{\mathbb{N}}\right) \subseteq L_{n}$.
(iii) $\lambda\left(L_{n}\right)=\left(\frac{2}{3}\right)^{n}$.

Indeed,
(i) Note that L_{1} is well defined and is of the desired form. If L_{n-1} is of the wanted form, then K_{n} divides every interval in 3 and takes away the middle part, so the number of intervals will be $2 \cdot 2^{n-1}=2^{n}$, all of them having length $\frac{1}{3^{n-1}} \cdot \frac{1}{3}=\frac{1}{3^{n}}$. So L_{n} has the desired form.
(ii) Realize that all $a_{i}^{(n)}$ have the form

$$
a_{i}^{n}:=\sum_{i=1}^{n} \frac{\epsilon_{i}}{3^{n}},
$$

where $\epsilon_{i} \in\{0,2\}$. As for K_{1}, we have the equation $\bigcup_{n \in \mathbb{N}} K_{n} \cap X\left(\{0,2\}^{\mathbb{N}}\right)=\emptyset$ Then

$$
X\left(\{0,2\}^{\mathbb{N}}\right) \subseteq\left(\bigcup_{n=1}^{N} K_{n}\right)^{c}=L_{N}
$$

(iii) L_{n} has 2^{n} disjoint intervals, each one with measure $\frac{1}{3^{n}}$ so $\lambda\left(L_{n}\right)=\left(\frac{2}{3}\right)^{n}$.

Thanks to this

$$
1 \geq \lambda\left(\bigcup_{n \in \mathbb{N}} K_{n}\right) \geq 1-\lambda\left(L_{n}\right) \rightarrow 1
$$

As $K_{n}=\bigcup_{k} I_{k}^{(n)}$ we have the conclusion.
To finish here is a graph of the cumulative function, called Devil's Staircase:

