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Solution 5.1

(a) Remember that x mod 1 = x− bxc. Note that the chord is longer than a side of the triangle
if (V − U) mod 1 ∈

( 1
3 ,

2
3
)
.

P
[
(V − U) mod 1 ∈

(
1
3 ,

2
3

)]
=
∫∫

(0,1)2
1(y−x) mod 1∈( 1

3 ,
2
3 )dydx

=
∫ 1

0

(∫ 1

0
1y∈( 1

3 +x, 2
3 +x) mod 1dy

)
dx

=
∫ 1

0

1
3dy = 1

3 .

(b) Let r be the point chosen in the radius, it is a uniform random variable over [0, 1]. The length
of the chord will be given by 2

√
(1− r2). Then

P
(

2
√

(1− r2) ≥
√

3
)

= P
(

1− r2 ≥ 3
4

)
= P

(
r2 ≤ 1

4

)
= 1

2 .

(c) Let (x, y) be the point chosen in the circle, it is a uniform random variable over B(0, 1). The
length of the chord will be given by 2

√
1− (x2 + y2). Thus,

P
(

2
√

(1− (x2 + y2)) ≥
√

3
)

= P
(

1− (x2 + y2) ≥ 3
4

)
= P

(
(x2 + y2) ≤ 1

4

)
=
∫∫

B(0, 1
2 )

1
π
dxdy = 1

4 .
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(d) This is not a contradiction. What this shows us is that there is not a formal way to “pick a
chord uniformly at random” in this circle, so we have to define the probability measure we
are interested in before asking the question about the probability of an event.

Solution 5.2 Let us suppose, first, that µ1 = µ2 = 0. We just have to use the convolution formula:

fX1+X2(x) = 1
2πσ1σ2

∫ ∞
−∞

exp(− y2

2σ2
1

) exp(− (x− y)2

2σ2
2

)dy

= 1
2πσ1σ2

∫ ∞
−∞

exp
(
−σ

2
2y

2 + σ2
1(x− y)2

2σ2
1σ

2
2

)
dy

= 1
2πσ1σ2

∫ ∞
−∞

exp
(
−σ

2
2y

2 + σ2
1x

2 + σ2
1y

2 − 2σ2
1xy

2σ2
1σ

2
2

)
dy

=
exp(− x2

2σ2
2
)

2πσ1σ2

∫ ∞
−∞

exp

−(σ2
1 + σ2

2)
y2 − 2σ2

1xy

(σ2
1+σ2

2)

2σ2
1σ

2
2

 dy

=
exp(− x2

2σ2
2

+ σ2
1x

2

2σ2
2(σ2

1+σ2
2) )

2πσ1σ2

∫ ∞
−∞

exp

−
(
y − σ2

1x

(σ2
1+σ2

2)

)2

2σ2
1σ

2
2

σ2
1+σ2

2

 dy

= 1
√

2π
√
σ2

1 + σ2
2

exp(− x2

2(σ2
1 + σ2

2) ),

that is the distribution function of a normal random variable with parameter N(0, σ2
1 + σ2

2).
For the general case note, that Xi − µi is distributed as N(0, σ2

i ). So (X1 − µ1) + (X2 − µ2) ∼
N(0, σ2

1 + σ2
2), then X1 +X2 ∼ N(µ1 + µ2, σ

2
1 + σ2

2).

Solution 5.3

(a) We have that the cumulative distribution function of Y for y ≥ 0 is given by:

FY (y) = P (Y ≤ y) = P (−√y ≤ X ≤ √y) = 2FX(√y)− 1.

Then, taking the derivative we have:

fY (y) = fx(√y)y− 1
21y≥0 = ce−

y
2 y−

1
21y≥0.

(b) By the convolution formula we have that:

fY1+Y2(x) =
∫ x

0
fY (x− y)fY (y)dy1x≥0

= c21

∫ x

0
(x− y)− 1

2 e−
x−y

2 y−
1
2 e−

y
2 dy1x≥0

= c21e
− x

2

∫ x

0
(x− y)− 1

2 y−
1
2 dy1x≥0

= c21

(∫ 1

0
x(x− ux)− 1

2 (ux)− 1
2 du

)
e−

x
2 1x≥0

=
(
c21

∫ 1

0
(1− u)− 1

2u−
1
2 du

)
e−

x
2 1x≥0.

This is the distribution of an exponential random variable.
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(c) By the previous questions, the base case is true. Now let us prove the inductive step. Suppose
that the proposition is true for n− 1, then

f∑n

i=1
Yi

(x) =
∫ x

0
fY (x− y)f∑n−1

i=1
Yi

(y)dy1x≥0

= c1cn−1

∫ x

0
(x− y)− 1

2 e−
x−y

2 y
n−1

2 −1e−
y
2 dy1x≥0

= c1cn−1e
− x

2

∫ 1

0
(x− xu)− 1

2 (xu)
n−1

2 −1xdu1x≥0

=
(
c1cn−1

∫ 1

0
(1− u)− 1

2 (u)−
n−1

2 −1du

)
e−

x
2 x

n
2−1

1x≥0.

Solution 5.4

(a) To find the density we differentiate the cumulative distribution function

F (t) := P(X ≤ t) = 1− P(X ≥ t) = 1− e−λt.

Then its density is

f(t) := F ′(t) = λe−λt.

We can calculate its mean as

E (X) =
∫ ∞

0
tλe−λtdt

= −te−λt |∞0 +
∫ ∞

0
e−λtdt

= 1
λ
.

Its second moment is

E
(
X2) =

∫ ∞
0

λt2e−λtdt

= −t2e−λt |∞0 +2
∫ ∞

0
te−λtdt

= 2
λ2 .

Finally,

V ar(X) = E
(
X2)− E (X)2 = 1

λ2 .

(b) We have to compute

P (min{X1, X2} > t) = P(X1 > t,X2 > t)
= P(X1 > t)P(X2 > t)
= e−λ1te−λ2t

= e−(λ1+λ2)t.

This is the definition of min{X1, X2} ∼ E(λ1 + λ2).
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(c) It holds that,

P (Y ≥ t+ h | Y ≥ h) = P(Y ≥ t+ h)
P(Y ≥ h) = e−λt = P(Y ≥ t).

(d) We have

G(t+ h) = P(Y ≥ t+ h)

= P(Y ≥ t+ h)
P(Y ≥ h) P(Y ≥ h)

= P(Y ≥ t+ h | Y ≥ h)P(Y ≥ h)
= G(t)G(h).

(e) First we will prove by induction that for all n ∈ N and (an)n∈N ⊆ R we have that G(
∑n
i=1 ai) =∏n

i=1G(ai). It holds when n = 1. Then, assuming the statement is true for some n ≥ 1

G

(
n+1∑
i=1

ai

)
= G(an+1)G

(
n∑
i=1

an

)
=
n+1∏
i=1

G(ai),

where we first used the memoryless property and then the induction hypothesis. Take
m,n ∈ N, we have that

G(1)m = G

(
m∑
i=1

1
)

= G

(
n∑
i=1

m

n

)
= G

(m
n

)n
⇒G(1) m

n = G
(m
n

)
(f) Finally, take t ∈ R+ and (tn)n∈N, (sn)n∈N ⊆ Q so that tn ↗ t and sn ↘ t. The monotonicity

of G(t) yields

G(tn) ≤ G(t) ≤ G(sn)
G(1)tn ≤ G(t) ≤ G(1)sn

which gives G(t) = G(1)t. Finally we have that P(Y ≥ t) = G(1)t = e
− ln
(

1
G(1)

)
t, then

Y ∼ E
(

ln
(

1
G(1)

))
.

Solution 5.5 We compute first the cumulative distribution function of λ given X = 1. By
hypothesis,

P(X = 1 |Λ) = E(1{X=1} |Λ) = e−ΛΛ.
Hence

P(X = 1) = E(1{X=1}) = E[E(1{X=1} |Λ)] =
∫ ∞

0
e−λλf(λ)dλ

=
∫ ∞

0
2e−λλe−2λdλ

=
∫ ∞

0
2λe−3λdλ = 2/9.

By definition of the conditional expectation, and that for any x > 0, 1{Λ≤λ} is σ(Λ)-measurable,
hence

P(X = 1,Λ ≤ λ) = E[1{X=1}1{Λ≤λ}] = E[E(1{X=1} |Λ)1{Λ≤λ}] = E[e−ΛΛ1{Λ≤λ}],
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and the cumulative distribution function of λ given X = 1 is

P(Λ ≤ λ |X = 1) = P(X = 1,Λ ≤ λ)
P(X = 1) =

∫ λ
0 2se−3sds

P (X = 1) .

Differentiating the cumulative distribution function with respect to λ, we obtain the probability
distribution function

f(λ |X = 1) = 9λe−3λ.
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