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Solution 6.1

(a) We have by Chebyshev inequality that

P
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When n = 40, the bound is 0.8.

(b) Thanks to Central Limit Theorem, we have that:
√
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)
(d)→ N(0, 1).

Then, using this property we have
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≈ 0.97.

Solution 6.2

(a) Take ε > 0, we know by continuity of f that there exists δ > 0 so that for all x ∈ [c− δ, c+ δ],
|f(x)− f(c)| ≤ ε. Then

|E (f(Zn)− f(c)) | ≤ E (|f(Zn)− f(c)|)
≤ E

(
|f(Zn)− f(c)|1|Zn−c|≤δ

)
+ E

(
|f(Zn)− f(c)|1|Zn−c|>δ

)
≤ ε+ 2‖f‖∞P(|Zn − c| > δ) −−−−→

n→∞
ε.

(b) Take ε > 0 and define

fε(x) 7→ min
{

1
ε
d(x, [c− ε, c+ ε]), 1

}
.

fε is clearly a continuous function. Note that fε(x) = 0 if x ∈ [c− ε, c+ ε] and f(x) = 1 if
|x− c| ≥ 2ε. Then, we have that:

P(|Xn − c| ≥ 2ε) ≤ E [fε(Xn)] n→∞−−−−→ fε(c) = 0.

Solution 6.3
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(a) We know that for all ε ≤ 1
2

P

 ⋂
0<ε6 1

2

{|Xn| ≤ ε}

 = P [|Xn| = 0] = P [Acn] ,

so Xn
P→ 0 if and only if P(Acn)→ 1.

(b) Given that Xn takes only values in {0, 1}, the sequence converges if and only if, from a point
onward, it only takes the value 0. Therefore

{ω : limXn(ω) = 0} =
⋃
k∈N

⋂
n≥k

Acn = lim inf Acn.

(c) For n ∈ N, define rn = blog2(n)c and kn = n− 2rn . Take

An =
[
kn
2rn

,
kn + 1

2rn

]
,

note that P(An) = 2−rn → 0, so Xn
P→ 0. Moreover, there are 2rn integers ni such that

rn = blog2(ni)c, and we have

P

( ⋃
n:rn=r

An

)
= 2rn

1
2rn

= 1,

so
⋃
n:rn=r An = [0, 1]. Then we know that for each r ∈ N and for all x ∈ [0, 1] there exits n ∈ N

so that rn = r and x ∈ An, so Xn(x) is 1 infinitely many times. Thus, {ω : Xn(ω)→ 0} = ∅.

Solution 6.4

(a) With Chebyshev inequality

P
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∣∣∣∣ ≥ ε] ≤ 1
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(
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)
it is enough to prove that Var(Sn

n )→ 0 (n→∞).
Computing the variance we have:
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The result obtains if we can prove

lim
n→∞

2
n
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(n− k
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)
R(k) = 0 .
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This can be proved as Cesaro Lemma. Let ε > 0. As limk→∞R(k) = 0, there exists N ∈ N
such that for n ≥ N it holds that |R(n)| 6 ε. Then, for n > N + 1,
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n
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There exists N ′ ∈ N such that for n > N ′,
∣∣∣ 2
n

∑N
k=1

(
n−k
n

)
R(k)

∣∣∣ 6 ε. Then for n >
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)
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∣∣∣∣∣ 6 ε+ 2ε,

and we have proved the statement.

(b) We compute
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Define:
an(k) :=

{
k
n R(k) (k < n)
0 (k ≥ n)

it holds that an(k)→ 0(n→∞) for all k. Then we just have to use the dominated convergence
theorem, to prove that this part converges to 0. Note that |an(k)| ≤ |R(k)|and |R(k)| is
absolutely convergent. Therefore
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Then
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Solution 6.5

(a) Take f : R→ R a continuous and bounded function∣∣∣∣∫ fd((1− εn)µn + εnνn)−
∫
fdµ

∣∣∣∣ ≤ ∣∣∣∣∫ fdµn −
∫
fdµ

∣∣∣∣+ εn

∣∣∣∣∫ fdνn −
∫
fdµn

∣∣∣∣
≤
∣∣∣∣∫ fdµn −

∫
fdµ

∣∣∣∣+ 2εn‖f‖∞ → 0.

(b) Take µn = δ0, i.e. µ(A) = 10∈A and νn = δn. It is clear that µn → δ0 (it is a constant
sequence), so

(
1− 1

n

)
µn + 1

nνn → δ0, but:∫
|x|d

((
1− 1

n

)
µn + 1

n
νn

)
(x) = 1

n
n = 1 6= 0 =

∫
|x|dδ0(x).
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(c) We prove first the two claims of the Hint. We know that min{| · |,M} is a bounded continuous
function, therefore ∫

min{|x|,M}dµn(x)→
∫

min{|x|,M}dµ(x),

and ∫
|x|dµn(x)−

∫
min{|x|,M}dµn(x)

=
∫

(|x| −M)1|x|≥Mdµn(x)

≤
∫
|x|1|x|≥Mdµn(x)

≤

√∫
x2dµn(x)

∫
1|x|≥Mdµn(x)

≤
√
K

√∫
1|x|2≥M2dµn(x)

≤
√
K
√
K/M2

= K

M

where we used Cauchy-Schwarz and Chebychev inequalities successively. The above difference
is clearly non-negative. By the monotone convergence theorem∫

min{|x|,M}dµ(x)
M→∞
↗

∫
|x|dµ(x)

To finish, take ε > 0, and M so that K/M ≤ ε, and that∣∣∣∣∫ min{|x|,M}dµ(x)−
∫
|x|dµ(x)

∣∣∣∣ ≤ ε.
Take n0 such that for all n ≥ n0,∣∣∣∣∫ min{|x|,M}dµn(x)−

∫
min{|x|,M}dµ(x)

∣∣∣∣ ≤ ε.
Finally,∣∣∣∣∫ |x|dµn(x)−

∫
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∣∣∣∣
≤
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∫
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∣∣∣∣+
∣∣∣∣∫ min{|x|,M}dµn(x)−

∫
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∣∣∣∣
+
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∫
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∣∣∣∣
≤K/M + ε+ ε = 3ε.

Since ε is arbitrary, the statement is proved.
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