Probability and Statistics
 Solution sheet 7

Solution 7.1

(a) The distribution function of an exponentially distributed random variable X is given by

$$
F_{X}(x)=\mathbb{P}(X \leq x)=1-e^{-\lambda x}
$$

For an α-quantile q_{α} one has

$$
\mathbb{P}\left(X \leq q_{\alpha}\right) \geq \alpha \text { and } \mathbb{P}\left(X \geq q_{\alpha}\right) \geq 1-\alpha
$$

Since X has a density (so $\mathbb{P}(X=x)=0$ for every $x \in \mathbb{R}$),

$$
1-e^{-\lambda q_{\alpha}}=\mathbb{P}\left(X \leq q_{\alpha}\right)=\alpha
$$

That is

$$
q_{\alpha}=-\ln (1-\alpha) / \lambda
$$

(b) The distribution function is

$$
F_{U}(u)=\mathbb{P}(U \leq u)=\left\{\begin{array}{l}
0, \quad u<1 \\
k / N, \quad u \in[k, k+1), k \in\{1, \cdots N-1\} \\
1, \quad u \geq N
\end{array}\right.
$$

Then, if $\alpha=k / N$ for some $k \in\{1, \cdots, N-1\}$, the quantile can be chosen in $[k, k+1)$. If $\alpha \in(k / N,(k+1) / N)$, then the quantile is uniquely determined: $q_{\alpha}=k+1$.

Solution 7.2

(a) We have to prove that $\int_{\mathbb{R}^{2}} f_{X, Y}(x, y) d x d y=1$.

$$
\begin{aligned}
\int_{1}^{\infty} \int_{0}^{\infty} e^{-x^{2} y} d y d x & =\left.\int_{1}^{\infty}\left(-\frac{e^{-x^{2} y}}{x^{2}}\right)\right|_{0} ^{\infty} d x \\
& =\int_{1}^{\infty} \frac{1}{x^{2}} d x=1
\end{aligned}
$$

(b) By definition, $f_{X}(x)=\int_{\mathbb{R}} f_{X, Y}(x, y) d y$, then

$$
f_{X}(x)=\int_{0}^{\infty} e^{-x^{2} y} d y \mathbb{1}_{x \geq 1}=\frac{1}{x^{2}} \mathbb{1}_{x \geq 1}
$$

(c) We compute

$$
\begin{aligned}
\mathbb{P}\left(Y \leq \frac{1}{X^{2}}\right) & =\int_{1}^{\infty} \int_{0}^{1 / x^{2}} e^{-x^{2} y} d x d y \\
& =\int_{1}^{\infty} \frac{1}{x^{2}}-e^{-1} \frac{1}{x^{2}}=1-e^{-1}
\end{aligned}
$$

Solution 7.3

(a) $X \sim \mathcal{E}(\lambda)$ so it has density

$$
f_{X}(x)=\mathbb{1}_{\{x \geq 0\}} \lambda e^{-\lambda x}
$$

Y as well,

$$
f_{Y}(y)=\mathbb{1}_{\{y \geq 0\}} \lambda e^{-\lambda y}
$$

The joint density of $(X, Z):=(X, X+Y)$ is

$$
\begin{aligned}
f_{X, Z}(x, z) & =f_{X, Y}(x, z-x) \\
\text { (independence of } X \text { and } Y) & =f_{X}(x) f_{Y}(z-x) \\
& =\mathbb{1}_{\{x \geq 0\}} \lambda e^{-\lambda x} \mathbb{1}_{\{z-x \geq 0\}} \lambda e^{-\lambda(z-x)} \\
& =\mathbb{1}_{\{0 \leq x \leq z\}} \lambda^{2} e^{-\lambda z}
\end{aligned}
$$

(b) The event B has probability:

$$
\begin{aligned}
\mathbb{P}(B) & =\int_{a}^{\infty} \int_{0}^{a} f_{X, Z}(x, z) d x d z \\
& =\int_{a}^{\infty} \int_{0}^{a} \mathbb{1}_{\{0 \leq x \leq z\}} \lambda^{2} e^{-\lambda z} d x d z \\
& =a \lambda^{2} \int_{a}^{\infty} e^{-\lambda z} d z \\
& =a \lambda e^{-\lambda a}
\end{aligned}
$$

Note that it is also the probability that a Poisson $(a \lambda)$ random variable equals to 1 (it is also the probability of a Poisson process with intensity λ having exactly one point on the interval $[0, a])$. Similarly, for $0 \leq b \leq a$,

$$
\begin{aligned}
\mathbb{P}(X \leq b \mid B) & =\frac{\mathbb{P}(X \leq b, Z \geq a)}{\mathbb{P}(B)} \\
& =\frac{\int_{a}^{\infty} \int_{0}^{b} f_{X, Z}(x, z) d x d z}{a \lambda e^{-\lambda a}} \\
& =\frac{b}{a}
\end{aligned}
$$

(c) The density is obtained by taking the derivative of $\mathbb{P}(X \leq b \mid B)$ with respect to b, which gives

$$
f_{X \mid B}(x)=\mathbb{1}_{\{0 \leq x \leq a\}} \frac{1}{a}
$$

We conclude that the conditional law of X given B is the uniform distribution on $[0, a]$.

Solution 7.4

(a) For $\lambda=0$ the property is trivial. If $\lambda>0$, using Markov (Tchebyshev) inequality we have that

$$
\begin{aligned}
\mathbb{P}(X \geq t) & =\mathbb{P}(\exp (\lambda X) \geq \exp (\lambda t)) \\
& \leq \frac{1}{\exp (\lambda t)} \mathbb{E}(\exp (\lambda X))
\end{aligned}
$$

(b) Given that $\exp (\lambda \cdot)$ is a convex function, thanks to Jensen inequality we have that:

$$
\mathbb{E}(\exp (\lambda X)) \geq \exp (\mathbb{E}(\lambda X))
$$

and so

$$
\phi(\lambda)=\ln (\mathbb{E}(\exp (\lambda X))) \geq \lambda \mathbb{E}(X)
$$

(c) Using part a) we have that for all $\lambda>0$

$$
\begin{aligned}
& \mathbb{P}(X \geq \lambda) \leq \exp (-\lambda t) \mathbb{E}\left(e^{\lambda X}\right)=\exp \left(\phi_{X}(\lambda)-\lambda t\right) \\
& \mathbb{P}(X \geq \lambda) \leq \exp \left(-\sup _{\lambda \geq 0}\left\{\lambda t-\phi_{X}(\lambda)\right\}\right)
\end{aligned}
$$

where we have just taken the infimum of the exponential term over $\lambda \geq 0$.
(d) Let us compute

$$
\begin{aligned}
\mathbb{E}\left(e^{\lambda X}\right) & =\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} \exp (\lambda x) \exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right) d x \\
& =\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} \exp \left(-\frac{x^{2}-2 \lambda \sigma^{2}}{2 \sigma^{2}}\right) d x \\
& =\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} \exp \left(-\frac{\left(x-\lambda \sigma^{2}\right)^{2}}{2 \sigma^{2}}\right) \exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\right) d x \\
& =\exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\right)
\end{aligned}
$$

then $\phi(\lambda)=\frac{1}{2} \lambda^{2} \sigma^{2}$.
(e) We use Fubini's theorem to compute

$$
\begin{aligned}
\mathbb{E}(X) & =\mathbb{E}\left(\int_{0}^{\infty} \mathbb{1}_{\{t \leq X\}} d t\right) \\
& =\int_{0}^{\infty} \mathbb{E}\left(\mathbb{1}_{\{X \geq t\}}\right) d t \\
& =\int_{0}^{\infty} \mathbb{P}(X \geq t) d t
\end{aligned}
$$

(f) First, we need to calculate

$$
\sup _{\lambda>0}\left\{\lambda t-\frac{1}{2} \lambda^{2} \sigma^{2}\right\}
$$

this is just a quadratic function in λ, so it attains its maximum at $\lambda_{\max }=t / \sigma^{2}>0$. Then its supremum is $t^{2} / 2 \sigma^{2}$. With the result of question (c), we obtain

$$
\begin{aligned}
\mathbb{P}(Y \geq t) & \leq \exp \left(-\sup _{\lambda \geq 0}\left\{\lambda t-\phi_{Y}(\lambda)\right\}\right) \\
& \leq \exp \left(-\sup _{\lambda \geq 0}\left\{\lambda t-\phi_{X}(\lambda)\right\}\right) \\
& =\exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right) .
\end{aligned}
$$

Thus, using question (e) we have

$$
\begin{aligned}
\mathbb{E}\left(Y^{2}\right) & =\int_{0}^{\infty} P\left(Y^{2} \geq t\right) d t=\int_{0}^{\infty} P(Y \geq \sqrt{t}) d t+\int_{0}^{\infty} P(-Y \geq \sqrt{t}) d t \\
& \leq 2 \int_{0}^{\infty} \exp \left(-\frac{t}{2 \sigma^{2}}\right) d t \\
& =4 \sigma^{2}
\end{aligned}
$$

Where we have used also

$$
\phi_{-Y}(\lambda)=\phi_{Y}(-\lambda) \leq \phi_{X}(-\lambda)=\phi_{-X}(\lambda)=\phi_{X}(\lambda)
$$

hence the previous step can also be applied to $\mathbb{P}(-Y \geq \sqrt{t})$.

Solution 7.5

(a) $\cdot \varphi_{X}(0)=\mathbb{E}[1]=1$.

- $\varphi_{X}(t)=\int e^{i t x} \mu(d x) \leq \int\left|e^{i t x}\right| \mu(d x)=1$, since μ is a probability measure on \mathbb{R}.
- This follows from the classical dominated convergence theorem and that $e^{i t x}$ is bounded.
- $\varphi_{a X+b}(t)=\mathbb{E}\left[e^{i t(a X+b)}\right]=e^{i t b} \mathbb{E}\left[e^{i t a X}\right]=e^{i t b} \varphi_{X}(a t)$.
(b) We can prove this by induction. The case $k=0$ holds by definition of φ_{X}. Assume that for $k<n$ the proposition is true, and consider the quantity

$$
\frac{\varphi_{X}^{(k)}(t+h)-\varphi_{X}^{(k)}(t)}{h}=i^{k} \mathbb{E}\left[X^{k} e^{i t X} X \frac{e^{i h X}-1}{h X}\right]
$$

Since $\left|\frac{e^{i h X}-1}{h X}\right| \leq 1$ for any X and goes to i as $h \rightarrow 0$, using the fact that X^{k+1} is integrable, we obtain that the above expression tends to $i^{k+1} \mathbb{E}\left[X^{k+1} e^{i t X}\right]$, by the dominated convergence theorem.
(c) Let X be a standard Normal random variable (i. e. $X \sim \mathcal{N}(0,1)$),

$$
\begin{aligned}
\varphi_{X}(t) & =\int_{-\infty}^{+\infty} e^{i t x} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \\
& =\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\left(x^{2}-2 i t x\right) / 2} d x \\
& =\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-(x-i t)^{2} / 2} e^{-t^{2} / 2} d x \\
& =e^{-t^{2} / 2}
\end{aligned}
$$

If $Y \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $(Y-\mu) / \sigma \sim \mathcal{N}(0,1)$. Thus

$$
\varphi_{Y}(t)=e^{i t \mu} \varphi_{X}(\sigma t)=e^{i t \mu-\sigma^{2} t^{2} / 2}
$$

(d) As X and Y are independent, for every $f, g: \mathbb{R} \rightarrow \mathbb{R}, f(X)$ and $g(Y)$ are also independent random variables. Thus

$$
\varphi_{X+Y}(t)=\mathbb{E}\left[e^{i t(X+Y)}\right]=\mathbb{E}\left[e^{i t X} e^{i t Y}\right]=\mathbb{E}\left[e^{i t X}\right] \mathbb{E}\left[e^{i t Y}\right]=\varphi_{X}(t) \varphi_{Y}(t)
$$

Solution 7.6

(a) We have that

$$
\mathbb{E}\left(S_{n}^{4}\right)=\frac{1}{n^{4}} \sum_{i, j, k, l=1}^{n} \mathbb{E}\left(X_{i} X_{j} X_{k} X_{l}\right),
$$

note that if $i \notin\{j, k, l\}$

$$
\mathbb{E}\left(X_{i} X_{j} X_{k} X_{l}\right)=\mathbb{E}\left(X_{i}\right) \mathbb{E}\left(X_{j} X_{k} X_{l}\right)=0 .
$$

Thus,

$$
\begin{aligned}
\mathbb{E}\left(X_{i} X_{j} X_{k} X_{l}\right)= & \frac{1}{n^{4}} \sum_{i, j, k, l=1}^{n} \mathbb{1}_{\{i=j=k=l\}} \mathbb{E}\left(X_{1}^{4}\right) \\
& +\frac{1}{n^{4}} \sum_{i, j, k, l=1}^{n}\left(\mathbb{1}_{\{i=j \neq k=l\}}+\mathbb{1}_{\{i=k \neq j=l\}}+\mathbb{1}_{\{i=l \neq k=j\}}\right) \mathbb{E}\left(X_{1}^{2}\right)^{2} \\
= & \frac{1}{n^{3}} \mathbb{E}\left(X_{1}^{4}\right)+\frac{6(n-1)}{n^{3}} \mathbb{E}\left(X_{1}^{2}\right)^{2} .
\end{aligned}
$$

We have by Cauchy-Schwarz inequality that

$$
\mathbb{E}\left(X_{1}^{2}\right)=\mathbb{E}\left(X_{1}^{2} * 1\right) \leq \sqrt{\mathbb{E}\left(X_{1}^{4}\right)} \sqrt{\mathbb{E}\left(1^{2}\right)}<\infty
$$

(b) We will use the Markov inequality, i.e.,

$$
\begin{aligned}
\mathbb{P}\left(\left|S_{n}\right|>a\right) & =\mathbb{P}\left(\frac{\left(S_{n}\right)^{4}}{a^{4}}>1\right) \\
& =\mathbb{E}\left[\mathbb{1}_{\left\{\frac{\left(S_{n}\right)^{4}}{a^{4}} \geq 1\right\}}\right] \\
& \leq \mathbb{E}\left[\frac{\left(S_{n}\right)^{4}}{a^{4}} \mathbb{1}_{\left\{\frac{\left(S_{n}\right)^{4}}{a^{4}} \geq 1\right\}}\right] \\
& \leq \mathbb{E}\left[\frac{\left(S_{n}\right)^{4}}{a^{4}}\right] \\
& =\frac{1}{a^{4}}\left(\frac{1}{n^{3}} \mathbb{E}\left(X^{4}\right)+\frac{6(n-1)}{n^{3}} \mathbb{E}\left(X_{1}^{2}\right)^{2}\right) \\
& \leq \frac{6}{a^{4}} \frac{1}{n^{2}} \mathbb{E}\left[X_{1}^{4}\right],
\end{aligned}
$$

where in the last inequality we have used that $\mathbb{E}\left[X_{1}^{2}\right]^{2} \leq \mathbb{E}\left[X_{1}^{4}\right]$.
(c) Take $A_{n}^{m}=\left\{\omega:\left|S_{n}(\omega)\right|>\frac{1}{m}\right\}$. We have that

$$
\sum_{n \in \mathbb{N}} \mathbb{P}\left(A_{n}^{m}\right) \leq \sum_{n \in \mathbb{N}} 6 m^{4} \frac{1}{n^{2}} \mathbb{E}\left(X^{4}\right)<\infty .
$$

By Borel-Cantelli $\mathbb{P}\left(\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_{k}\right)=0$, so

$$
\begin{aligned}
& \mathbb{P}\left(\bigcup_{m \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_{k}\right)=0 \\
& \mathbb{P}\left(\bigcap_{m \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \bigcap_{k \geq n} A_{k}^{c}\right)=1 .
\end{aligned}
$$

If $\omega \in \bigcap_{m \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \bigcap_{n \geq k} A_{k}^{c}$ then for all $m \in \mathbb{N}$ there exists $n(\omega)$ so that for all $k \geq n(\omega)$ $\left|S_{n}(\omega)\right|<\frac{1}{m}$. Thus, $\lim _{n \rightarrow \infty}\left|S_{n}(\omega)\right|=0$. This implies that

$$
\mathbb{P}\left(\lim S_{n}(\omega)=0\right)=1
$$

(d) Define $\tilde{X}_{n}=X_{n}-\mathbb{E}\left(X_{n}\right)$. We have that \tilde{X}_{n} satisfies all the hypothesis for (c), then

$$
\begin{aligned}
& \mathbb{P}\left(\lim \tilde{X}_{n}=0\right)=1 \\
\Rightarrow & \mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}=\mathbb{E}\left[X_{n}\right]\right)=1
\end{aligned}
$$

