Probability and Statistics

Solution sheet 8

Solution 8.1

(a) We compute:

$$
\begin{aligned}
\mathbb{P}(Z \geq t) & =\mathbb{P}(\{X \geq t, Y>0\} \cup\{X \leq-t, Y \leq 0\}) \\
& =\frac{1}{2} \mathbb{P}(X \geq t)+\frac{1}{2} \mathbb{P}(X \leq-t) \\
& =\mathbb{P}(X \geq t)
\end{aligned}
$$

Therefore, Z has the same law as X, thus $Z \sim \mathcal{N}(0,1)$.
(b) Using the definition of covariance

$$
\begin{aligned}
\operatorname{Cov}(X, Z) & =\mathbb{E}(X Z)-\mathbb{E}(X) \mathbb{E}(Z) \\
& =\mathbb{E}\left(X^{2} \mathbb{1}_{\{y \geq 0\}}\right)+\mathbb{E}\left(-X^{2} \mathbb{1}_{\{y<0\}}\right)=0 .
\end{aligned}
$$

(c) We have that

$$
\mathbb{P}(X+Z=0)=\mathbb{P}(Y<0)+\mathbb{P}(Y \geq 0,2 X=0)=\frac{1}{2}
$$

(d) The vector (X, Z) is not a multivariate normal, because the sum of the two coordinates is not normally distributed.

Solution 8.2

(a) As X is a Gaussian vector, $Y:=\sum_{i=1}^{n} \alpha_{i} X_{i}$ is also Gaussian. $\mathbb{E}(Y)=0$ and

$$
\operatorname{Var}(Y)=\operatorname{Cov}\left(\sum_{i=1}^{n} \alpha_{i} X_{i}, \sum_{j=1}^{n} \alpha_{j} X_{j}\right)
$$

The covariance operator is bilinear, hence

$$
\operatorname{Var}(Y)=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} K_{X}(i, j)=\alpha K_{X}{ }^{t} \alpha
$$

where $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$.
(b) K_{X} is symmetric, and as the variance is always non-negative, K_{X} is positive.
(c) First, $Z:=\left(X_{1}, X_{2}\right)$ is a Gaussian vector. Let denote Σ its variance matrix.

$$
\Sigma=\left(\begin{array}{cc}
\operatorname{Var}\left(X_{1}\right) & 0 \\
0 & \operatorname{Var}\left(X_{2}\right)
\end{array}\right)
$$

The characteristic function of Z is

$$
\begin{aligned}
\varphi_{Z}(a, b) & =\mathbb{E}\left[\mathrm{e}^{i\left(a X_{1}+b X_{2}\right)}\right] \\
& =\frac{1}{2 \pi \sqrt{|\Sigma|}} \iint \mathrm{e}^{i(a x+b y)} \exp \left(-\frac{1}{2}(x, y)\left(\begin{array}{cc}
\operatorname{Var}\left(X_{1}\right) & 0 \\
0 & \operatorname{Var}\left(X_{2}\right)
\end{array}\right)^{-1}\binom{x}{y}\right) d x d y \\
& =\exp \left(-(a, b)\left(\begin{array}{cc}
\operatorname{Var}\left(X_{1}\right) & 0 \\
0 & \operatorname{Var}\left(X_{2}\right)
\end{array}\right)\binom{a}{b} / 2\right) \\
& =\exp \left(-\left(a^{2} \operatorname{Var}\left(X_{1}\right)+b^{2} \operatorname{Var}\left(X_{2}\right)\right) / 2\right) \\
& =\exp \left(-a^{2} \operatorname{Var}\left(X_{1}\right) / 2\right) \exp \left(-b^{2} \operatorname{Var}\left(X_{2}\right) / 2\right)
\end{aligned}
$$

You can compare this result with Exercise 7.5.
The above expression is also the characteristic function of the joint law of two independent centered random gaussian variables, with variance respectively $\operatorname{Var}\left(X_{1}\right)$ and $\operatorname{Var}\left(X_{2}\right)$. Since the characteristic function determines the joint law, X_{1} and X_{2} are independent. If we omit the hypothesis that $\left(X_{1}, X_{2}\right)$ is a Gaussian vector, then 0 covariance does not imply the independence, as the example given in the previous exercise shows.

Solution 8.3 We apply the formula

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)=\mathbb{E}\left(X_{1} X_{2}\right)-\mathbb{E}\left(X_{1}\right) \mathbb{E}\left(X_{2}\right)
$$

Since the marginal density for X_{1} is

$$
\begin{gathered}
f_{1}\left(x_{1}\right)=\int_{0}^{1} 4 x_{1} x_{2} d x_{2}=2 x_{1} \\
\mathbb{E}\left(X_{1}\right)=\int_{0}^{1} x_{1} f_{1}\left(x_{1}\right) d x_{1}=2 / 3=\mathbb{E}\left(X_{2}\right)
\end{gathered}
$$

We have also

$$
\mathbb{E}\left(X_{1} X_{2}\right)=\int_{0}^{1} \int_{0}^{1} x_{1} x_{2} 4 x_{1} x_{2} d x_{1} d x_{2}=4 / 9
$$

Thus $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$. Actually, one can see from $f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)=f\left(x_{1}, x_{2}\right)$ that X_{1} and X_{2} are independent.

We want to find the joint p.d.f. of $\left(Y_{1}, Y_{2}\right)=\left(r_{1}\left(X_{1}, X_{2}\right), r_{2}\left(X_{1}, X_{2}\right)\right)$, where $r_{1}\left(x_{1}, x_{2}\right)=x_{1} / x_{2}$ and $r_{2}\left(x_{1}, x_{2}\right)=x_{1} x_{2}$. We have that

$$
\begin{gathered}
x_{1}=\sqrt{r_{1} r_{2}} \text { and } x_{2}=\sqrt{r_{2} / r_{1}} . \\
\operatorname{Jac}\left(r_{1}, r_{2}\right)=\operatorname{det}\left(\begin{array}{ll}
\partial x_{1} / \partial r_{1} & \partial x_{2} / \partial r_{1} \\
\partial x_{1} / \partial r_{2} & \partial x_{2} / \partial r_{2}
\end{array}\right)=\frac{1}{4} \operatorname{det}\left(\begin{array}{cc}
\sqrt{r_{2} / r_{1}} & -\sqrt{r_{2} / r_{1}^{3}} \\
\sqrt{r_{1} / r_{2}} & \sqrt{1 / r_{1} r_{2}}
\end{array}\right)=\frac{1}{2 r_{1}} .
\end{gathered}
$$

By the transformation formula of the density,

$$
\begin{aligned}
f_{Y_{1}, Y_{2}}\left(r_{1}, r_{2}\right) & =f_{X_{1}, X_{2}}\left(\sqrt{r_{1} r_{2}}, \sqrt{r_{2} / r_{1}}\right) \operatorname{Jac}\left(r_{1}, r_{2}\right) \\
& \left.=4 r_{2} / 2 r_{1} \mathbb{1}_{\left\{0<\sqrt{r_{1} r_{2}}\right.}, \sqrt{r_{2} / r_{1}}<1\right\} \\
& \left.=\mathbb{1}_{\left\{0<\sqrt{r_{1} r_{2}}\right.}, \sqrt{r_{2} / r_{1}}<1\right\}
\end{aligned} 2 r_{2} / r_{1} .
$$

Solution 8.4

(a) For $k=1,2, \cdots$

$$
\begin{aligned}
\mathbb{E}\left[X^{k}\right] & =\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{k} x^{\alpha-1} e^{-\beta x} d x \\
& =\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha+k-1} e^{-\beta x} d x \\
& =\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} \beta^{-\alpha-k} y^{\alpha+k-1} e^{-y} d y \\
& =\frac{\Gamma(\alpha+k)}{\beta^{k} \Gamma(\alpha)}
\end{aligned}
$$

where we used the change of variable $y=\beta x$. Then $\mathbb{E}(X)=\alpha / \beta$. Furthermore, for $\alpha>0$,

$$
\Gamma(\alpha+1)=\alpha \Gamma(\alpha)
$$

We then deduce

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}=\alpha / \beta^{2}
$$

(b) By definition of moment generating function,

$$
\begin{aligned}
\psi_{X}(t) & =\mathbb{E}\left(e^{t X}\right) \\
& =\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} e^{t x} x^{\alpha-1} e^{-\beta x} d x \\
& =\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha-1} e^{-(\beta-t) x} d x \\
& =\left(\frac{\beta}{\beta-t}\right)^{\alpha}
\end{aligned}
$$

The above computation is only valid for $t<\beta$.
(c) If ψ_{i} denotes the moment generating function of X_{i}, then it follows from the last question that for $i=1, \cdots, k$,

$$
\psi_{i}(t)=\left(\frac{\beta}{\beta-t}\right)^{\alpha_{i}}
$$

The m.g.f. ψ of $X_{1}+\cdots+X_{k}$ is, by independence,

$$
\psi(t)=\prod_{i=1}^{k} \psi_{i}(t)=\left(\frac{\beta}{\beta-t}\right)^{\alpha_{1}+\cdots+\alpha_{k}} \quad \text { for } t<\beta
$$

It coincides with the m.g.f. of a Gamma random variable with parameter $\left(\alpha_{1}+\cdots+\alpha_{k}, \beta\right)$, on an open interval around 0 , thus the sum $X_{1}+\cdots+X_{k}$ has the Gamma distribution.

Solution 8.5

(a) The joint probability distribution function of X_{1}, \cdots, X_{n}, Z is

$$
\begin{aligned}
f\left(x_{1}, \cdots, x_{n}, z\right) & =\prod_{i=1}^{n} g_{1}\left(x_{i} \mid z\right) f_{2}(z) \\
& =2 z^{n} \exp \left(-z\left[2+x_{1}+\cdots+x_{n}\right]\right)
\end{aligned}
$$

if $z, x_{1}, \cdots, x_{n}>0$ and 0 otherwise.
(b) The marginal joint distribution of X_{1}, \cdots, X_{n} is obtained by integrating z out of the joint probability distribution function above.

$$
\int_{0}^{\infty} f\left(x_{1}, \cdots, x_{n}, z\right) d z=\frac{2 \Gamma(n+1)}{\left(2+x_{1}+\cdots+x_{n}\right)^{n+1}}=\frac{2(n!)}{\left(2+x_{1}+\cdots+x_{n}\right)^{n+1}}
$$

for all $x_{i}>0$ and 0 otherwise.
(c) We set $y=2+\sum_{i=1}^{n} x_{i}$, for $z>0$

$$
\begin{aligned}
g_{2}\left(z \mid x_{1}, \cdots, x_{n}\right) & =f\left(x_{1}, \cdots, x_{n}, z\right) \frac{y^{n+1}}{2(n!)} \\
& =\frac{z^{n} \exp (-z y) y^{n+1}}{n!} \\
& =\frac{y^{n+1}}{\Gamma(n+1)} z^{n+1-1} e^{-y z}
\end{aligned}
$$

we recognize the conditional distribution of Z given $X_{1}=x_{1}, \cdots X_{n}=x_{n}$ is Gamma distribution with parameter $\alpha=n+1, \beta=y$.
(d) The conditional expected value of Z given $X_{1}=x_{1}, \cdots X_{n}=x_{n}$ is the expected value of the Gamma distribution with parameter $\alpha=n+1, \beta=y$, which by the previous exercise, equals to

$$
\mathbb{E}\left(Z \mid X_{1}=x_{1}, \cdots X_{n}=x_{n}\right)=\frac{n+1}{2+\sum_{i=1}^{n} x_{i}}
$$

Solution 8.6 If we define $S_{n}:=\sum_{i=1}^{n} X_{i} \sim \operatorname{Poi}(n)$, we have that:

$$
e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}=\mathbb{P}\left(S_{n} \leq n\right)=\mathbb{P}\left(S_{n} \leq n \mathbb{E}\left(X_{1}\right)\right)=\mathbb{P}\left(\frac{1}{\sqrt{n}}\left(S_{n}-n \mathbb{E}\left(X_{1}\right)\right) \leq 0\right) \rightarrow \frac{1}{2}
$$

