Probability and Statistics

Solution sheet 9

Solution 9.1

(a) By definition of a lognormal distribution, $N:=\log \left(Z_{1}\right) \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Thus

$$
\mathbb{E}\left(Z_{1}\right)=\mathbb{E}\left(e^{N}\right)=\varphi_{N}(1)=e^{\mu+\sigma^{2} / 2}
$$

where we have used the moment generating function of N :

$$
\varphi_{N}(t)=\mathbb{E}\left(e^{t N}\right)=e^{t \mu+t^{2} \sigma^{2} / 2}
$$

We get:

$$
\mathbb{E}\left(S_{1}\right)=S_{0} e^{\mu+\sigma^{2} / 2}
$$

(b) Let $X:=\left(\log \left(Z_{1}\right)-\mu\right) / \sigma \sim \mathcal{N}(0,1)$,

$$
S_{1}=S_{0} e^{\mu+\sigma X} \Rightarrow \frac{1}{S_{1}}=\frac{e^{-\mu-\sigma X}}{S_{0}}
$$

Hence $1 / S_{1}$ has the distribution of $1 / S_{0}$ times a lognormal random variable with parameter $-\mu$ and σ^{2}.
(c) By question a)

$$
\mathbb{E}\left(1 / S_{1}\right)=e^{-\mu+\sigma^{2} / 2} / S_{0}
$$

Note that if we use a random variable to modelize the rate of change from A to B, than its inverse will be the rate of change from B to A. The product of expected value is always larger than 1 if the variance is non-zero (Jensen's inequality). Here $\mathbb{E}\left(S_{1}\right) \mathbb{E}\left(1 / S_{1}\right)=e^{\sigma^{2}}$.
(d) The k-th moment of a lognormal distribution is easy to compute: For $k=1,2, \cdots$,

$$
\mathbb{E}\left(S_{1}^{k}\right)=S_{0}^{k} \mathbb{E}\left(e^{k \mu+k \sigma X}\right)=\left(S_{0} e^{\mu}\right)^{k} e^{k^{2} \sigma^{2} / 2}
$$

Solution 9.2

(a) Since Z and V are independent, the p.d.f. of the couple (Z, V) is

$$
f_{Z, V}(z, v)=f_{Z}(z) f_{V}(v)
$$

where $f_{Z}(z)=e^{-z^{2} / 2} / \sqrt{2 \pi}$ is the p.d.f. of standard normal distribution. By the transformation formula, one obtains the joint p.d.f. of (T, V) :

$$
f_{T, V}(t, v)=f_{Z}\left(t \sqrt{\frac{v}{n}}\right) f_{V}(v) \sqrt{\frac{v}{n}}
$$

(b) The conditional probability given $V=v$ is

$$
f_{T \mid v}(t)=\frac{f_{T, V}(t, v)}{f_{V}(v)}=f_{Z}\left(t \sqrt{\frac{v}{n}}\right) \sqrt{\frac{v}{n}}=\exp \left(-\frac{t^{2}}{2 n / v}\right) \frac{\sqrt{v / n}}{\sqrt{2 \pi}}
$$

which is the p.d.f. of a centered normal distribution with variance n / v. One can guess it by replace directly V by v in the expression of T (which can be proven when Z and V are independent).
(c) The c_{n} can be computed as the constant making f_{V} a p.d.f. (with integral 1):

$$
1 / c_{n}=\int_{0}^{\infty} x^{n / 2-1} \exp (-x / 2) d x=2^{n / 2} \Gamma(n / 2)
$$

(d) The p.d.f. of T is obtained by integrating $f_{T, V}$:

$$
\begin{aligned}
f_{T}(t) & =\int_{0}^{\infty} f_{T, V}(t, v) d v \\
& =\frac{c_{n}}{\sqrt{2 \pi n}} \int_{0}^{\infty} \exp \left(-v \frac{t^{2}}{2 n}\right) v^{n / 2-1} e^{-v / 2} \sqrt{v} d v \\
& =\frac{c_{n}}{\sqrt{2 \pi n}} \int_{0}^{\infty} \exp \left(-v\left(\frac{t^{2}}{2 n}+\frac{1}{2}\right)\right) v^{(n+1) / 2-1} d v \\
& =\frac{c_{n}}{\sqrt{2 \pi n}} \frac{\Gamma((n+1) / 2)}{\left(\frac{t^{2}}{2 n}+\frac{1}{2}\right)^{(n+1) / 2}} \\
& =\left(\frac{t^{2}}{n}+1\right)^{-(n+1) / 2} \frac{\Gamma((n+1) / 2)}{\Gamma(n / 2) \sqrt{\pi n}} 2^{-n / 2-1 / 2+(n+1) / 2} \\
& =\left(\frac{t^{2}}{n}+1\right)^{-(n+1) / 2} \frac{\Gamma((n+1) / 2)}{\Gamma(n / 2) \sqrt{\pi n}}
\end{aligned}
$$

Solution 9.3

(a) Set $f=\mathbb{1}_{[-3,1]}$, then

$$
A=\mathbb{E}[f(U)]=\mathbb{P}(U \in[-3,1])=\mathbb{P}[f(U)=1]
$$

(b) $n S_{n}$ follows the binomial law with parameter (n, A). Hence

$$
\mathbb{P}\left(n S_{n}=k\right)=\binom{n}{k} A^{k}(1-A)^{n-k}
$$

or equivalently

$$
\mathbb{P}\left(S_{n}-A=k / n-A\right)=\binom{n}{k} A^{k}(1-A)^{n-k}
$$

(c) $\mathbb{E}\left(S_{n}\right)=A$ and

$$
\begin{aligned}
\operatorname{Var}\left(S_{n}\right) & =n \operatorname{Var}\left(f\left(U_{i}\right) / n\right) \\
& =\left(A-A^{2}\right) / n .
\end{aligned}
$$

(d) By Tchebychev inequality

$$
\mathbb{P}\left[\left|S_{n}-A\right| \geq x\right]=\mathbb{P}\left[\left|S_{n}-A\right|^{2} \geq x^{2}\right] \leq \frac{\operatorname{Var}\left(S_{n}\right)}{x^{2}} \leq \frac{1}{n x^{2}}
$$

The convergence is valid for all $x>0$, which means that S_{n} converges in probability to A. To numerically approximate the value A, one can sample independently a family $\left(U_{i}\right)_{i=1 . . n}$ having the standard normal distribution, and counts the number of points in the interval $[-3,1]$ then divide by n. While the n becomes larger we get a better approximation of A.
(e) We can apply the weak Law of large number.

Solution 9.4 Let X follows Chi-squared distribution $\chi^{2}(m)$ with m degrees of freedom which is also a Gamma distribution with parameter $(m / 2,1 / 2)$. Then \sqrt{X} follows $\chi(m)$, has the expected value:

$$
\begin{aligned}
\mathbb{E}[\sqrt{X}] & =\frac{(1 / 2)^{m / 2}}{\Gamma(m / 2)} \int_{0}^{\infty} \sqrt{x} x^{m / 2-1} e^{-x / 2} d x \\
& =\frac{(1 / 2)^{m / 2}}{\Gamma(m / 2)} \int_{0}^{\infty} y^{(m+1) / 2-1} e^{-y}(1 / 2)^{-(m+1) / 2} d y \\
& =\sqrt{2} \frac{\Gamma((m+1) / 2)}{\Gamma(m / 2)}
\end{aligned}
$$

