Algebraic Topology II

Exercise Sheet 1

- 1. Show that any map $f: S^1 \longrightarrow S^1$ such that $\deg(f) \neq 1$ has a fixed point.
- **2.** Let G be a topological group and take its identity element e as basepoint.
 - a) Define a pointwise product of loops α and β by $(\alpha\beta)(t) = \alpha(t)\beta(t)$. Prove that it is equivalent to the composition of paths.
 - **b)** Deduce that $\pi_1(G, e)$ is abelian.
- **3.** Let C be a category with a terminal object 1 and all products of objects.
 - a) Give the definition of a group object on \mathcal{C} . Explain how group objects on \mathcal{C} form a category $\operatorname{Gp}(\mathcal{C})$.
 - b) Decide what a group object in C is when C is the category:
 - of sets;
 - of topological spaces;
 - of open subsets of a fixed topological space X.
 - c) Prove that a group object in the category of groups is an abelian group.
 - **d)** Let \mathcal{D} be another category like \mathcal{C} and $F : \mathcal{C} \longrightarrow \mathcal{D}$ a functor preserving products and terminal objects. Show that \mathcal{F} induces a functor $\operatorname{Gp}(\mathcal{C}) \longrightarrow \operatorname{Gp}(\mathcal{D})$.
 - e) Deduce the same result as in the previous exercise.
- 4. Find the fundamental group of the torus with two handles:

- 5. Find the fundamental group of the Klein bottle.
- **6.** Let $X = \{(p,q) : p \neq -q\} \subseteq S^n \times S^n$ and consider the map $f : S^n \longrightarrow X$ sending $p \mapsto (p,p)$. Prove that it is a homotopy equivalence. [*Hint:* Define a map $X \longrightarrow S^n$ which you could not extend to the whole $S^n \times S^n$]
- 7. Let \mathcal{C} be a category.
 - **a)** Use common sense to complete the following definition: A coequalizer of two morphisms $f, g: X \longrightarrow Y$ in \mathcal{C} is an object C together with a morphism $c: Y \longrightarrow C$ such that...
 - **b**) Define again the coequalizer of f as an initial object of a suitable category.
 - c) Explain how a cokernel (in an additive category) is a coequalizer.
 - d) Show: if C has all coequalizers and arbitrary coproducts, then C is *cocomplete*, that is, it has all colimits.
 - e) Deduce formally, in terms of opposite categories, that a category which has all products and equalizers is complete.