D-MATH Prof. Peter S. Jossen

Exercise Sheet 10

- 1. Let X be a CW complex and A a compact subset of X. Show that A is contained in a finite subcomplex of X.
- **2.** Let X be a CW complex with filtration $X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow \ldots$. For each integer $k \ge 0$, prove that the induced map $\pi_k(X_n) \longrightarrow \pi_k(X_{n+1})$ is surjective for n = k and an isomorphism for n > k.
- **3.** Show that a CW complex is contractible if it is the union of an increasing sequence of subcomplexes $X_1 \subseteq X_2 \subseteq \ldots$ such that each inclusion $X_i \hookrightarrow X_{i+1}$ is nullhomotopic.
- 4. a) Explain how to define the infinite sphere S^{∞} as a CW complex.
 - **b)** Prove that S^{∞} is contractible.
- 5. Show that an *n*-connected, *n*-dimensional CW complex is contractible.
- **6.** Let X and Y be homotopy equivalent CW complexes, both without (n+1)-cells. Prove that the *n*-skeletons of X and Y are also homotopy equivalent.
- 7. Consider the Hopf map $h: S^3 \longrightarrow S^2$ and consider $X := D^4 \sqcup S^2 / \sim$ where \sim identifies the points of $S^3 \subseteq D^4$ with their image via h in S^2 . Compute $\pi_k(X)$ for k = 0, 1, 2, 3. Can you say something about $\pi_4(X)$?