D-MATH Prof. Peter S. Jossen Algebraic Topology II

Exercise Sheet 11

We will need the following excision theorem (see Theorem 4.23 in Hatcher's book):

Theorem. Let X be a CW complex decomposed as the union of subcomplexes A and B with non-empty connected intersection C. If (A, C) is m-connected and (B, C) is n-connected for some integers $m, n \ge 0$, then the map $\pi_1(A, C) \longrightarrow \pi_1(X, B)$ induced by inclusion is an isomorphism for i < m + n and a surjection for i = m + n.

- **1.** Let (X, A) be a CW pair.
 - a) Consider the space $X' = X \cup CA$ obtained by attaching a cone CA along $A \subseteq X$. Prove that the quotient map $X' \longrightarrow X'/CA = X/A$ is a homotopy equivalence.

Suppose moreover that (X, A) is r-connected and A is s-connected for some $r, s \ge 0$.

- **b)** Show that (CA, A) is (s + 1)-connected.
- c) Show that the map $\pi_i(X, A) \longrightarrow \pi_i(X/A)$ induced by the quotient $X \longrightarrow X/A$ is an isomorphism for $i \leq r + s$ and a surjection for i = r + s + 1. [*Hint:* Excision]
- **2.** Let *I* be a finite set and $n \ge 2$ an integer. Consider the wedge sum of spheres $X = \bigvee_{i \in I} S^n$. Prove that the inclusions $S^n \longrightarrow X$ induce an isomorphism $\mathbb{Z}^I \xrightarrow{\sim} \pi_n(X, x_0)$. Generalise this for possibly infinite *I*. [*Hint:* If you do not know how to proceed, look at Example 4.26 on Hatcher's book]
- **3.** Consider that map $\mathbb{P}^{\infty}\mathbb{R} \longrightarrow \mathbb{P}^{\infty}\mathbb{C} = K(\mathbb{Z}, 2)$ induced by the inclusion. What does it induce on homology groups, cohomology groups and homotopy groups?
- **4.** Show that the group structure on S^1 coming from multiplication in \mathbb{C} induces a group structure on $[X, S^1]$, which makes the bijection $\Phi : [X, S^1] \xrightarrow{\sim} H^1(X; \mathbb{Z})$ a group isomorphism.
- **5.** Let G, H be abelian groups and consider CW complexes K(G, n) and K(H, n).
 - **a)** What is the canonical map $[K(G, n), K(H, n)] \longrightarrow \text{Hom}(G, H)$?
 - **b**) Prove that this map is a bijection.

- 6. Let X be a topological space. A principal G-bundle on X is a covering $p: E \longrightarrow X$ together with an action of G on E inducing a simply transitive action of G on $p^{-1}(x_0)$ for each $x_0 \in X$.
 - a) Explain how principal G-bundles form a category. In particular, explain what an isomorphism of principal G-bundles is.
 - **b)** Check that the quotient map $p_G: EG \longrightarrow BG$ is a *G*-bundle.
 - c) Given a map $f: X \longrightarrow BG$, how do we construct the pullback $f^*p: f^*EG \longrightarrow X$ of p?
 - d) Prove that this induces an isomorphism

 $[X,BG] \stackrel{\sim}{\longrightarrow} \{\text{principal } G\text{-bundles}\}/\sim.$

- 7. Let X be a K(G, 1) space and denote by X_n its n-th skeleton component.
 - **a)** Prove that $\pi_1(X_1)$ is a free group.
 - **b)** Prove that $\pi_2(X_2)$ is a free abelian group group.
 - c) (*) What can you say about $\pi_n(X_n)$?

Show that $\pi_n(X^n)$ is free abelian for $n \ge 2$.