Exercise Sheet 2

- **1.** Let G be a Hausdorff, connected, locally path connected topological group with identity element e and $p: H \longrightarrow G$ a connected covering. Fix $f \in p^{-1}(e)$.
 - a) Prove that H has a unique continuous product $H \times H \longrightarrow H$ with identity element f such that p is a homorphism.
 - b) Show that H is a topological group under this product, and it is abelian if G is.
 - c) What happens if H is not connected?
 - d) Prove that $\ker(p)$ is a discrete normal subgroup of H.
 - e) The map

$$\vartheta : \ker(p) \longrightarrow \operatorname{Aut}_G(H)$$

 $k \longmapsto (h \mapsto kh)$

is an isomorphism of groups.

f) Deduce that, denoting by \tilde{G} the universal covering of G with its unique groups structure as in a), we have a short exact sequence of groups

$$1 \longrightarrow \pi_1(G, e)^{\mathrm{op}} \longrightarrow G \longrightarrow G \longrightarrow 1.$$
 (1)

- **2.** Let *H* be a connected locally path connected topological group and $K \leq H$ a normal discrete subgroup. Show that $K \leq Z(H)$.
- **3.** Let $f: X \longrightarrow Y$ be a map of connected, locally path connected Hausdorff topological spaces. We say that f is a *local homeomorphism* if every point $x \in X$ is an open neighborhood that maps homeomorphically onto an open subset of Y.
 - a) Give an example of a surjective local homeomorphism that is not a covering.
 - b) Prove: if X is compact and $f: X \longrightarrow Y$ a surjective local homeomorphism, then f is a covering with finite fibers.