Exercise Sheet 8

- **1.** Let G be a group.
 - a) Construct a topological space X with $x_0 \in X$ such that $\pi_1(X, x_0) \cong G$.
 - b) Suppose that G is finitely presented. Prove that X in the previous part can be taken to be a finite CW complex.
 - c) Let X be any finite CW complex and $x_0 \in X$. Show that $\pi_1(X, x_0)$ is finitely presented.
- **2.** Let X be a CW complex. You may assume the cellular approximation theorem.
 - a) Show that the map $\pi_n(X_j) \longrightarrow \pi_n(X)$ is surjective for each $j \ge n$.
 - **b)** (*) Show that it is an isomorphism for j > n.
- **3.** a) Describe explicitly a CW-structure on \mathbb{P}^1 , \mathbb{P}^2 and \mathbb{P}^3 . Show that \mathbb{P}^{n+1} can be obtained out of \mathbb{P}^n by attaching a (n+1)-cell for all $n \ge 1$.
 - **b)** How do we define the infinite projective space $\mathbb{P}^{\infty}\mathbb{R}$?
 - c) Compute $\pi_n(\mathbb{P}^{\infty}\mathbb{R})$ for $n \ge 0$.
- 4. Let $f: X \longrightarrow Y$ be a cellular map between two connected CW complexes. Prove that f factors as a composition $X \longrightarrow Z_n \longrightarrow Y$ where the first map induces isomorphisms on π_i for $i \leq n$ and the second map induces isomorphisms on π_i for $i \geq n + 1$.
- 5. (Yoneda Lemma) Let \mathcal{C} be a category and X an object in \mathcal{C} . We denote by h_X the contravariant functor $\operatorname{Hom}(-, X) : \mathcal{C} \longrightarrow \operatorname{Sets}$.
 - a) Let $F: \mathcal{C} \longrightarrow$ Sets be a contravariant functor. Prove that the map

$$\operatorname{Hom}_{\operatorname{functors}}(h_X, F) \longrightarrow F(X)$$
$$\eta \longmapsto \eta_X(\operatorname{id}_X).$$

is a bijection.

b) Let X' be another object of C. What happens for $F = h_{X'}$?

- c) We say that a contravariant functor $F : \mathcal{C} \longrightarrow$ Sets is represented by X if $F \cong h_X$. Deduce from the previous points: if two representable functors are isomorphic, then the corresponding representing objects are isomorphic.
- d) Which of the following contravariant functors are representable?
 - \mathcal{P} : Sets \longrightarrow Sets sending X to its power set $\mathcal{P}(X)$.
 - Open : Top \longrightarrow Sets sending each topological space to the set of its open subsets.
 - $F : \mathcal{C} \longrightarrow$ Sets, where \mathcal{C} is the category of sets with morphisms given by the injective maps, sending X to the set of partial orders on X.