Exercise Sheet 1

- **1.** A topological group G is a group, together with a topology such that the multiplication map $G \times G \longrightarrow G$ and the inversion map $G \longrightarrow G$ are continuous.
 - a) Prove that if H is an open subgroup of G, then H is closed.
 - **b)** Is the converse true?
 - c) Prove that G is Hausdorff if and only if $\{1_G\}$ is closed.
- **2.** Let (I, \leq) be a partially ordered set which is directed, meaning that for each $\alpha, \beta \in I$ there exists $\gamma \in I$ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$. A filtered inverse system of groups indexed on I is the data of groups G_{α} for $\alpha \in I$ and group morphisms $\phi_{\alpha\beta}: G_{\beta} \longrightarrow G_{\alpha}$ for each $\alpha \leq \beta$, such that $\phi_{\alpha\alpha} = \mathrm{id}_{G_{\alpha}}$ and $\phi_{\alpha\gamma} = \phi_{\alpha\beta}\phi_{\beta\gamma}$ for all $\alpha \leq \beta \leq \gamma$.
 - a) We define the limit of the filtered inverse system $(G_{\alpha}, \phi_{\alpha\beta})$ as

$$\lim_{\alpha \in I} G_{\alpha} := \{ (g_{\alpha})_{\alpha \in I} : \forall \alpha \leq \beta, \phi_{\alpha\beta}(g_{\beta}) = g_{\alpha} \} \leq \prod_{\alpha \in I} G_{\alpha}.$$

What is the universal property of $\lim_{\alpha \in I} G_{\alpha}$?

b) Suppose that the G_{α} are Hausdorff topological groups and endow $\prod_{\alpha \in I} G_{\alpha}$ with the product topology. Prove: $\lim_{\alpha \in I} G_{\alpha}$ is a closed subgroup of $\prod_{\alpha \in I} G_{\alpha}$.

We define a *profinite group* to be a limit of a filtered inverse system of **finite** discrete groups, with topology induced by the inclusion in the product. Given a group G, we define the *profinite completion* of G as

$$\hat{G} := \lim_{\substack{N \le G \\ [G:N] < \infty}} G/N.$$

- c) Define the canonical map $\iota: G \longrightarrow \hat{G}$. Prove that it is injective if and only if G is residually finite, that is, for each element of G there is a group homomorphism h from G to a finite group such that $h(g) \neq 1$.
- c') (Prompted by a question by João Manuel Pereira) Recall that a group G is called divisible if for each $g \in G$ and each integer $n \geq 1$, there exists an element $h \in G$ such that $h^n = g$. Show that there are no non-trivial group morphisms from a divisible group to a finite group. Deduce that a non-trivial divisible group cannot be residually finite. Use this to give concrete examples of groups which are not residually finite.

- **d)** We will deal during the course with the following profinite groups: $\hat{\mathbb{Z}}$, $\hat{\mathbb{Z}}^{\times}$ and \mathbb{Z}_p , with p a prime number. The profinite group \mathbb{Z}_p is defined as the limit of the inverse system $(\mathbb{Z}/p^k\mathbb{Z})_{k\in\mathbb{Z}_{\geq 0}}$ with canonical projections as maps $\mathbb{Z}/p^k\mathbb{Z} \longrightarrow \mathbb{Z}/p^h\mathbb{Z}$ for $h \leq k$. How would you define $\hat{\mathbb{Z}}^{\times}$?
- e) Prove that $\hat{\mathbb{Z}} \cong \prod_p \mathbb{Z}_p$ as topological groups, where p ranges over the prime numbers.
- **3.** Let L/K be a finite field extension. The following statements are all equivalent definitions of the extension L/K being Galois:
 - L/K is normal and separable;
 - L is the splitting field of a separable polynomial $f \in K[X]$;
 - $|Aut_K(L)| = [L : K];$
 - $K = L^{\operatorname{Aut}(L/K)}$.
 - a) Prove that the four definitions above are equivalent.
 - b) State the Galois correspondence

$$\{L/M/K \text{ intermediate fields}\} \leftrightarrow \{H \leq \operatorname{Gal}(L/K)\}.$$

- c) Let $\xi_n = e^{\frac{2\pi i}{n}} \in \mathbb{C}$. The cyclotomic field has a subfield $\mathbb{Q}(\xi_n + \xi_n^{-1})$. Identify the corresponding subgroup of $\mathrm{Gal}(\mathbb{Q}(\xi_n)/\mathbb{Q})$.
- d) Compute all intermediate fields of $\mathbb{Q}(\xi_7)/\mathbb{Q}$ and the corresponding subgroups of $\operatorname{Gal}(\mathbb{Q}(\xi_7)/\mathbb{Q})$. Compare the result to Table 5.5 from the class (available on the webpage as well).
- **4.** Prove that the only subgroups of finite index of \mathbb{R}^{\times} are $\mathbb{R}_{>0}$ and \mathbb{R}^{\times} itself. Explain how you would define the Artin map

$$\rho_{\mathbb{R}}: \mathbb{R}^{\times} \longrightarrow \operatorname{Gal}(\mathbb{C}/\mathbb{R}).$$

- **5.** Prove: all local fields are complete.
- **6.** a) Prove that $|\cdot|_p$ is an absolute value on \mathbb{Q} .
 - b) Prove that the map $|\cdot|$ on k(t) defined in class is indeed an absolute value.
 - c) Show that both absolute values above are non-archimedean.