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1. A topological group G is a group, together with a topology such that the multiplication
map G×G −→ G and the inversion map G −→ G are continuous.

a) Prove that if H is an open subgroup of G, then H is closed.

b) Is the converse true?

c) Prove that G is Hausdorff if and only if {1G} is closed.

2. Let (I,≤) be a partially ordered set which is directed, meaning that for each α, β ∈ I
there exists γ ∈ I such that α ≤ γ and β ≤ γ. A filtered inverse system of groups
indexed on I is the data of groups Gα for α ∈ I and group morphisms φαβ : Gβ −→ Gα
for each α ≤ β, such that φαα = idGα and φαγ = φαβφβγ for all α ≤ β ≤ γ.

a) We define the limit of the filtered inverse system (Gα, φαβ) as

lim
α∈I

Gα := {(gα)α∈I : ∀α ≤ β, φαβ(gβ) = gα} ≤
∏
α∈I

Gα.

What is the universal property of limα∈I Gα?

b) Suppose that the Gα are Hausdorff topological groups and endow
∏
α∈I Gα with

the product topology. Prove: limα∈I Gα is a closed subgroup of
∏
α∈I Gα.

We define a profinite group to be a limit of a filtered inverse system of finite discrete
groups, with topology induced by the inclusion in the product. Given a group G, we
define the profinite completion of G as

Ĝ := lim
NEG

[G:N ]<∞

G/N.

c) Define the canonical map ι : G −→ Ĝ. Prove that it is injective if and only if G is
residually finite, that is, for each element of G there is a group homomorphism h
from G to a finite group such that h(g) 6= 1.

c’) (Prompted by a question by João Manuel Pereira) Recall that a group G is called
divisible if for each g ∈ G and each integer n ≥ 1, there exists an element h ∈ G
such that hn = g. Show that there are no non-trivial group morphisms from a
divisible group to a finite group. Deduce that a non-trivial divisible group cannot
be residually finite. Use this to give concrete examples of groups which are not
residually finite.
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d) We will deal during the course with the following profinite groups: Ẑ, Ẑ× and Zp,
with p a prime number. The profinite group Zp is defined as the limit of the inverse
system (Z/pkZ)k∈Z≥0

with canonical projections as maps Z/pkZ −→ Z/phZ for

h ≤ k. How would you define Ẑ×?

e) Prove that Ẑ ∼=
∏
pZp as topological groups, where p ranges over the prime

numbers.

3. Let L/K be a finite field extension. The following statements are all equivalent defini-
tions of the extension L/K being Galois:

• L/K is normal and separable;

• L is the splitting field of a separable polynomial f ∈ K[X];

• |AutK(L)| = [L : K];

• K = LAut(L/K).

a) Prove that the four definitions above are equivalent.

b) State the Galois correspondence

{L/M/K intermediate fields} ↔ {H ≤ Gal(L/K)}.

c) Let ξn = e
2πi
n ∈ C. The cyclotomic field has a subfield Q(ξn + ξ−1n ). Identify the

corresponding subgroup of Gal(Q(ξn)/Q).

d) Compute all intermediate fields of Q(ξ7)/Q and the corresponding subgroups of
Gal(Q(ξ7)/Q). Compare the result to Table 5.5 from the class (available on the
webpage as well).

4. Prove that the only subgroups of finite index of R× are R>0 and R× itself. Explain
how you would define the Artin map

ρR : R× −→ Gal(C/R).

5. Prove: all local fields are complete.

6. a) Prove that | · |p is an absolute value on Q.

b) Prove that the map | · | on k((t)) defined in class is indeed an absolute value.

c) Show that both absolute values above are non-archimedean.


