## Exercise Sheet 3

1. Let $A$ be a discrete valuation ring and $K=\operatorname{Frac}(A)$. Let $\mathfrak{m}$ be the unique maximal ideal of $A$ and $k$ the residue field of $A$. Do $K$ and $k$ have the same characteristic?
2. Let $K$ be the fraction field of a discrete valuation ring, with valuation $v: K^{\times} \longrightarrow \mathbb{Z}$. Fix a real number $0<a<1$ and consider the absolute value

$$
|x|=a^{v(x)} .
$$

Prove that the field $K$ is locally compact with respect to the topology induced by $|\cdot|$ if and only if it is complete and has finite residue field.
3. Let $p$ be a prime number. For each system of "digits" $\alpha_{i} \in\{0,1, \ldots, p-1\}$ with $\alpha_{i}=0$ for $i \ll 0$, we associate the $p$-adic number

$$
\begin{equation*}
\sum_{i \in \mathbb{Z}} \alpha_{i} p^{i} \in \mathbb{Q}_{p} \tag{1}
\end{equation*}
$$

a) Explain how each element of $\mathbb{Q}_{p}$ has a unique expansion as above.
b) We say that the $p$-adic number $\alpha=\sum_{i \in \mathbb{Z}} \alpha_{i} p^{i}$ is definitely periodic if there exists a positive integer $d$ such that $\alpha_{i+d}=\alpha_{i}$ for $i \gg 0$. Prove that the definitely periodic $p$-adic numbers are precisely the rational numbers. [Hint: First, consider periodic $p$-adic integers]
4. For $p \in\{2,3,5,7\}$, decide if the polynomial $X^{2}+X+1$ has a root in $\mathbb{Q}_{p}$.
5. Let $p$ be a prime number. Show that $\mathbb{Q}_{p}(\sqrt{p})$ is totally ramified, and it is tamely ramified if and only if $p \neq 2$.
6. Let $d$ be a square-free non-zero integer and $p$ an odd prime number.
a) Show that $\mathbb{Q}_{p}(\sqrt{d})$ is an unramified extension of $\mathbb{Q}_{p}$ if and only if $p \nmid d$.
b) Given $d, d^{\prime}$ squarefree integers with $p \nmid d, d^{\prime}$, can you find an isomorphism between the corresponding $\mathbb{Q}_{p}(\sqrt{d}) \cong \mathbb{Q}_{p}\left(\sqrt{d^{\prime}}\right)$ over $\mathbb{Q}_{p}$ ?
c) Show that $d$ is a square in $\mathbb{Q}_{2}$ if and only if $d \equiv 1(\bmod 8)$ [Hint: There exists $F \in \mathbb{Q} \llbracket X \rrbracket$ such that $\left.F^{2}=1+X\right]$
d) Prove that $\mathbb{Q}_{2}(\sqrt{d})$ is an unramified extension of $\mathbb{Q}_{2}$ if and only if $d \equiv 1(\bmod 4)$.
e) Let $p_{1}, \ldots, p_{r}$ be distinct prime numbers with $p_{j} \equiv 1(\bmod 4)$ and $\ell$ any prime number. Show that the ramification index of the extension $\mathbb{Q}_{\ell}\left(\sqrt{-p_{1} \cdots p_{r}}, \sqrt{p_{1}}\right) / \mathbb{Q}_{\ell}$ is at most 2 .
7. Let $A$ be a discrete valuation ring with maximal ideal $\mathfrak{m}$ and $K=\operatorname{Frac}(A)$. Let $P \in A[X]$ be Eisenstein polynomial, that is, a polynomial of the form

$$
P=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0}
$$

with $a_{i} \in \mathfrak{m}$ for each $i \in\{0, \ldots, n-1\}$ and $a_{0} \notin \mathfrak{m}^{2}$. Such a polynomial is irreducible. Assume that $A$ is complete. Prove that the extension $L=K[X] /(P)$ of $K$ is totally ramified, and that all totally ramified extensions of $K$ are obtained in this way.
8. Let $k$ be a field. Show that all finite unramified field extensions of $k((t))$ are of the form $k^{\prime}((t))$ for $k^{\prime} / k$ a finite separable field extension.
9. Let $k$ be a perfect field.
a) Prove that $k((t))^{\mathrm{ur}}$ is the union of the $k^{\prime}((t))$ for $k^{\prime}$ finite extension of $k$.
b) Explain why this does not imply that $k((t))^{\mathrm{ur}}=\bar{k}((t))$ and try to find an example in which $\bar{k}((t))$ is strictly bigger than $k((t))^{\text {ur }}$.
c) Suppose that $k$ is algebraically closed. Prove that all extensions of $k((t))$ are totally ramified.
10. Let $K$ be a local field with residue field $k$.
a) Suppose that $K=k((t))$. Choose an infinite set $\left\{a_{0}, \ldots, a_{n}, \ldots\right\}$ of elements of $\bar{k}$. Show that $\left(\sum_{m=0}^{n} a_{m} t^{m}\right)_{n}$ is a sequence of elements of $K^{\mathrm{ur}}$ which does not converge in $K^{\text {ur }}$. Deduce that $K^{\text {ur }}$ is not complete with respect to the discrete valuation extending the one on $K$.
b) What is the completion of $K^{\mathrm{ur}}$ for $K=k((t))$ ?
c) Suppose now that $K=\mathbb{Q}_{p}$. Show that $\mathbb{Q}_{p}^{\text {ur }}$ is not complete.
d) Let $K$ be a local field. Endow $K^{\text {sep }}$ with the (non-discrete) valuation $v: K^{\text {sep }} \longrightarrow$ $\mathbb{Q} \cup\{\infty\}$ obtained by passing to the limit on the separable finite extensions $L$ of $K$ (where each $L$ is endowed with the valuation $v_{L}: L \longrightarrow \frac{1}{e_{L}} \mathbb{Z} \cup\{\infty\}$ extending $v$, where $e_{L}$ is the ramification index of $\left.L / K\right)$. Show that $K^{\text {sep }}$ is not complete with respect to this valuation [Hint: Observe that the limit of a sequence in $K^{\mathrm{ur}}$ converging in $K^{\text {sep }}$ lies on a finite extension $L$ of $K$. Deduce that such a limit must stay in $K^{\mathrm{ur}}$ ]

