Exercise Sheet 5

- 1. Let K be a complete valued field with non-discrete topology and let E be a Hausdorff topological vector space over K of finite dimension n. Prove that $E \cong K^n$ as topological vector spaces. [*Hint:* Induction on n]
- **2.** Let A be a DVR with residue field k and let $f \in A[X]$ be an irreducible polynomial. Let $\overline{f} \in k[X]$ be the reduction of f modulo \mathfrak{m}_A and suppose that the extension $k' := k[X]/(\overline{f})$ is a separable field extension of k. Prove that the ring A[X]/(f) is a DVR with residue field k'.
- **3.** a) Give a statement of the quadratic reciprocity law.
 - **b)** Find for which primes p the polynomial $f(X) = X^2 11$ has a root in \mathbb{Q}_p .
 - c) Let now p = 5. For each root α of f, compute the coefficients $a_i \in \{0, 1, \dots, 4\}$ of the expansion $\alpha = \sum_{i \in \mathbb{Z}} a_i 5^i$ for i < 5.
- 4. Let K be a complete discrete value field and L/K a finite algebraic extension. Let $T \subseteq L$ be the maximal unramified extension of K in L. Let $k \subseteq t \subseteq \ell$ be the associated residue field extensions. Prove: t is the maximal separable extension of k in ℓ .