## Exercise Sheet 8

In all the exercises, $G$ is a finite group. Given two $G$-modules $X$ and $A$, we endow $\operatorname{Hom}_{\mathbb{Z}}(X, A)$ and $X \otimes_{\mathbb{Z}} A$ with the $G$-actions defined for all $g \in G$ and $x \in X$ by

$$
\begin{aligned}
& \forall f \in \operatorname{Hom}_{\mathbb{Z}}(X, A),(g \cdot f)(x):=g \cdot f\left(g^{-1} x\right) \\
& \forall a \in A, \quad g \cdot(x \otimes a):=(g \cdot x) \otimes(g \cdot a) .
\end{aligned}
$$

Notice: if $A$ is an abelian group, we can endow it with trivial $G$-action. In this case we obtain $G$-actions defined by $(g \cdot f)(x):=f\left(g^{-1} x\right)$ and $g \cdot(x \otimes a)=(g \cdot x) \otimes a$.

1. (Computation of group homology)
a) Prove that the functors $(-)_{G}$ and $\mathbb{Z} \otimes_{\mathbb{Z}[G]}-$, from the category of $G$-modules to the category of abelian groups, are isomorphic. [Hint: the $\mathbb{Z}[G]$-module structure on $\mathbb{Z}$ is given via the augmentation map]

Let $\ldots \longrightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} \mathbb{Z} \longrightarrow 0$ be a projective resolution of the trivial $G$-module $\mathbb{Z}$, shortly written as $P_{\bullet} \xrightarrow{d_{0}} \mathbb{Z} \longrightarrow 0$.
b) Check that $P_{\bullet}$ is also a projective resolution of right $G$-modules, the right action of $G$ on each $P_{n}$ given by $p * g=g^{-1} \cdot p$ for $g \in G$ and $p \in P_{n}$.
c) Deduce that $H_{n}(G, A)=H^{n}\left(P_{\bullet} \otimes_{\mathbb{Z}[G]} A\right)$. [You may use the fact that, given a ring $R$, a right $R$-module $M$ and a left $R$-module $N$, then $\operatorname{Tor}_{i}^{R}(M, N)$ can be equivalently defined as the the $i$-th left derived functor of $-\otimes_{R} N$ or of $M \otimes_{R}$ ] ]
2. Prove that relatively injective $G$-modules have trivial homology in positive degree. [Hint: Apply the previous exercise on an induced $G$-module]
3. Let $X$ be a $G$-module which is free as $\mathbb{Z}$-module and $A$ any $G$-module.
a) Prove that the following map is an isomorphism of $G$-modules:

$$
\begin{aligned}
v: X \otimes_{\mathbb{Z}} A & \longrightarrow \operatorname{Hom}_{\mathbb{Z}}\left(\operatorname{Hom}_{\mathbb{Z}}(X, \mathbb{Z}), A\right) \\
x \otimes a & \longmapsto(f \mapsto f(x) a)
\end{aligned}
$$

b) Endow $X$ with the right $G$-action as in Exercise 1b). Prove that there is a canonical isomorphism $X \otimes_{\mathbb{Z}[G]} A \cong\left(X \otimes_{\mathbb{Z}} A\right)_{G}$.
4. (Computation of modified Tate cohomology) Let $P_{\bullet} \xrightarrow{\alpha} \mathbb{Z} \longrightarrow 0$ be a projective resolution by $G$-modules of $\mathbb{Z}$ (with trivial action), with differentials $d_{i}: P_{i} \longrightarrow P_{i-1}$ for $i \geq 1$. Consider the $\mathbb{Z}$-dual complex $0 \longrightarrow \mathbb{Z} \xrightarrow{\alpha_{*}} P_{*}^{\bullet}$ with $P_{*}^{n}:=\operatorname{Hom}_{\mathbb{Z}}\left(P_{n}, \mathbb{Z}\right)$ and differentials $d_{*}^{i}$ given by pre-composition with $d_{i}$.
a) Prove that the complex

$$
\begin{equation*}
\ldots \longrightarrow P_{1} \longrightarrow P_{0} \xrightarrow{\alpha_{*} \circ \alpha} P_{*}^{0} \longrightarrow P_{*}^{1} \longrightarrow \ldots \tag{1}
\end{equation*}
$$

is exact.
Rename the chain complex (1) as $Q_{\bullet}$ via $Q_{i}=P_{i}$ for $i \geq 0$ and $Q_{i}=P_{*}^{-i-1}$ for $i<0$. We want to prove that

$$
\begin{equation*}
\hat{H}^{i}(G, A) \cong H^{i}\left(\operatorname{Hom}_{\mathbb{Z}[G]}(Q \bullet, A)\right) \tag{2}
\end{equation*}
$$

for all $i \in \mathbb{Z}$, that is, that the cochain complex $\left(\operatorname{Hom}_{\mathbb{Z}[G]}\left(Q_{i}, A\right)\right)_{i \in \mathbb{Z}}$ computes the modified Tate cohomology of $A$.
b) Recall why this is the case for $i \geq 1$.
c) Define natural isomorphisms $\chi_{i}: P_{i} \otimes_{\mathbb{Z}[G]} A \longrightarrow \operatorname{Hom}_{\mathbb{Z}[G]}\left(P_{*}^{i}, A\right)$ for $i \geq 0$ [Hint: Use Exercise 3. You may want to use as well the norm map and the fact that induced $G$-modules have trivial Tate cohomology in each degree.]
d) Prove that the isomorphisms from the previous part respect the differentials and deduce that (2) holds for $i \leq-2$.
e) $\left(^{*}\right)$ Conclude by proving (2) in the cases $i=0$ and $i=-1$. [Hint: Check, using maps induced by $\alpha$ and $\alpha_{*}$, that the map $\tau$ in $\operatorname{Hom}_{\mathbb{Z}[G]}\left(Q_{-1}, A\right) \cong P_{0} \otimes_{\mathbb{Z}[G]} A \xrightarrow{\tau}$ $\operatorname{Hom}_{\mathbb{Z}[G]}\left(P_{0}, A\right)=\operatorname{Hom}_{\mathbb{Z}[G]}\left(Q_{0}, A\right)$ factors through the norm map $\left.A_{G} \longrightarrow A^{G}\right]$
5. Suppose that $G$ is a finite cyclic group and let $A$ be a $G$-module. If $\hat{H}^{0}(G, A)$ and $\hat{H}^{1}(G, A)$ are finite, we define the Herbrand quotient of $A$ as

$$
h(A):=\frac{\left|\hat{H}^{0}(G, A)\right|}{\left|\hat{H}^{1}(G, A)\right|} .
$$

Assume known the fact that the modified group homology of a finite cyclic group is 2-periodic. Prove the following properties of the Herbrand quotient:
a) Let $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ be a short exact sequence of $G$-modules. If two of the Herbrand quotients $h(A), h(B)$ and $h(C)$ are defined, then so is the third and $h(B)=h(A) h(C)$.
b) If $A$ is a finite $G$-module, then $h(A)=1$.
c) Let $f: A \longrightarrow B$ be a morphism of $G$-modules with finite kernel and cokernel. If one of the Herbrand quotients $h(A)$ and $h(B)$ is defined, then so is the other and they coincide.

