Exercise Sheet 9

1. Let p be a prime number, G a p-group and A a non-zero G-module. Assume that every element of A has order a power of p. Show that $A^{G} \neq\{0\}$.
2. Let G be a finite group and A and B two G-modules. Prove that, if B is induced, then the G-module $\operatorname{Hom}(A, B)$ is induced as well. (Recall that a G-module B is induced if one can find a subgroup X of B such that $\left.B=\bigoplus_{g \in G} g X\right)$.
3. The goal of this exercise is to establish the following:

Theorem 1. Let p be a prime number, G a p-group, and A a p-torsion G-module such that $\widehat{H}^{n}(G, A)=0$ for some integer n. Then A is an induced G-module.

The proof will be divided into several steps:
a) Let $\Lambda=\mathbb{F}_{p}[G]$. Choose a basis I of the \mathbb{F}_{p}-vector space A^{G} and set $V=\bigoplus_{I} \Lambda$. Observe that there is an isomorphism $j_{G}: A^{G} \simeq V^{G}$.
b) Deduce from the long exact sequence associated to

$$
0 \rightarrow \operatorname{Hom}\left(A / A^{G}, V\right) \rightarrow \operatorname{Hom}(A, V) \rightarrow \operatorname{Hom}\left(A^{G}, V\right) \rightarrow 0
$$

and Exercise 2 that there is a surjective map

$$
\operatorname{Hom}_{G}(A, V) \longrightarrow \operatorname{Hom}\left(A^{G}, V^{G}\right)
$$

It follows that j_{G} can be extended to a G-morphism $j: A \rightarrow V$.
c) Prove that j is injective (Hint: use Exercise 1 for the G-module ker j).
d) Prove that $H^{1}(G, A)=0$ implies that j is surjective, hence that $A \simeq V$ is an induced G-module.
e) Recall the following form of the "shift trick": given a G-module A, we define a sequence of G-modules $\left(A_{r}\right)_{r \in \mathbb{Z}}$ as follows:

- $A_{0}=A$
- A_{1} if defined by the exact sequence $0 \rightarrow A \rightarrow I_{G}(A) \rightarrow A_{1} \rightarrow 0$; for each $q \geq 2$, we recursively define $A_{q}=\left(A_{q-1}\right)_{1}$
- A_{-1} is defined by the exact sequence $0 \rightarrow A_{-1} \rightarrow I_{G}(A) \rightarrow A \rightarrow 0$ and, for each $q \leq-2$, we recursively define $A_{q}=\left(A_{q+1}\right)_{-1}$.

For all integers q, r, there is an isomorphism:

$$
\widehat{H}^{q}(G, A) \simeq \widehat{H}^{q-r}\left(G, A_{r}\right) .
$$

f) Use part d) and the shift trick to prove that the assumption $\widehat{H}^{n}(G, A)=0$ for some integer n implies that $H^{1}(G, A)=0$ and therefore that A is induced. This concludes the proof.

