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1. Motivation

In a 1640 letter to Mersenne, Fermat proved the following:

Theorem 1.1 (Fermat). A prime number p distinct from 2 is a sum of two squares if and
only if p ≡ 1 mod 4.

Factorising the expression x2 + y2 as (x+ iy)(x− iy), this translates into a question about
how prime numbers decompose in the ring of Gaussian integers Z[i]. More generally, let K
be a quadratic number field and OK its ring of integers. For each prime number p, the ideal
pOK decomposes uniquely as a product of prime ideals. There are three posibilities:

• pOK is a product of two distinct prime ideals p1 and p2 (p is totally decomposed),

• pOK remains a prime ideal (p is inert),

• pOK = p2 for some prime ideal p (p is ramified).

Using this language, Fermat’s theorem can be rephrased as follows: in the ring Z[i],

p is


totally decomposed p ≡ 1 mod 4,

inert p ≡ 3 mod 4,

ramified p = 2.

Similar phenomena arise for all quadratic fields. For example, in the ring of integers of the
quadratic field Q(

√
6), the ramified primes are p = 2, 3, and a prime is totally decomposed if

and only if p ≡ 1, 5, 19, 23 mod 24. An inspection of the tables reveals the common features:

• There is a finite number of ramified primes and how p decomposes is determined mod
N for an integer N which is a product of the ramified primes with some multiplicities.

• The totally decomposed primes form a subgroup of index 2 of (Z/NZ)×. For instance,

(Z/24Z)× = {1, 5, 7, 11, 13, 17, 19, 23}
and totally decomposed primes correspond to {1, 5, 19, 23}.

This is all explained by class field theory:

Theorem 1.2 (Kronecker-Weber). A number field K is abelian if and only if it is embeddable
into a cyclotomic field Q(µN ).

The smallest integer for which this holds is called the conductor.

Theorem 1.3. Let K be a number field.

(1) Assume that K is abelian. Then:
1
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(a) A prime number p is ramified1 in K if and only if p divides the conductor.

(b) If K ⊆ Q(µN ), then whether or not p is totally decomposed2 in K depends on p
modulo N .

(2) Conversely, if the conclusion of (b) holds, then K ⊆ Q(µN ) (so K is abelian).

In the particular case of quadratic fields, the conductor is given as follows: if K = Q(
√
d)

for a square-free integer d, then the conductor is

N =

{
|d| d ≡ 1 mod 4,

4|d| d ≡ 2, 3 mod 4.

From this we get a group morphism

χd : (Z/NZ)× ' Gal(Q(µN )/Q) −→ Gal(K/Q) ' {±1}
such that p is totally decomposed if and only if χd(p) = 1. This map is given by

χd(a) = θd(a)
∏
p|d

odd prime

(
a
p

)
,

where ( ·p) is the Legendre symbol and θd(a) is defined as follows:

• if d ≡ 1 mod 4, then θd(a) = 1 for all a,

• if d ≡ 3 mod 4, then θd(a) = 1 if a ≡ 1 mod 4 and −1 otherwise,

• if d is even, then θd(a) = 1 if a ≡ ±1 mod 8 and −1 otherwise,

2. The maximal abelian extension

2.1. Infinite Galois theory. Let K be a field. A (possibly infinite) field extension L/K is
Galois if it is the union of all the finite Galois extensions of K contained in L. The Galois
group Gal(L/K) is the group of field automorphisms of L restricting to the identity on K. It
can be written as an inverse limit of usual Galois groups

Gal(L/K) = lim←−Gal(M/K)

indexed by the directed set of finite Galois extensions M of K. Groups of this shape are
called profinite groups and come together with a topology for which the group operations are
continuous. A new feature of infinite Galois theory is that the topology plays a role. For
example, the Galois correspondence reads:

Theorem 2.1 (Galois correspondence). Let L/K be a Galois extension of Galois group G.
There is a one-to-one correspondence

{subfields K ⊆M ⊆ L} 1:1←→ {closed subgroups H of G}
given by sending a field M to Gal(L/M) and a subgroup H to M = LH . Moreover,

• M is a finite extension if and only if H is an open subgroup.

• M is a Galois extension if and only if Gal(L/M) is a normal subgroup of G.

(As you will prove in the exercises, an open subgroup is always closed!)

1for a general number field, this means that pOK decomposes as a product of distinct prime ideals.
2now this means that pOK decomposes as a product of [K : Q] distinct prime ideals
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Example 2.2.

(1) Let Ksep be a separable closure of K. Then Ksep is a Galois extension and the group
Gal(Ksep/K) is called the absolute Galois group of K.

(2) Let K be a field and Ksep a separable closure. The maximal abelian extension of K
is the union of all finite abelian extensions K ⊆ L ⊆ Ksep. It will be denoted by:

Kab =
⋃
L/K

finite abelian

L.

It is a Galois extension and the group Gal(Kab/K) is the abelianization of the absolute
Galois group of K. Class field theory aims at describing Gal(Kab/K) for various K.

2.2. The case of finite fields. Let K = Fq be the finite field with q elements. For each
integer n ≥ 1, there is a unique degree n extension of Fq, namely Fqn . It is a Galois extension.
If σq denotes the Frobenius automorphism x 7→ xq, then

Gal(Fqn/Fq) = 〈σq〉 ' Z/nZ.

It follows that the absolute Galois group of Fq is isomorphic to

Gal(Fq/Fq) = lim←−
n

Z/nZ def
= Ẑ. (1)

The assignment 1 7→ σq yields a continuous group morphism

ρFq : Z −→ Gal(Fq/Fq)

whose composition with (1) is the map sending an integer r to the collection of residues
(r mod n)n. Class field theory for finite fields is the following “toy” statement:

Proposition 2.3. There is a one-to-one correspondence

{finite abelian extensions of Fq}
1:1←→ {open subgroups of finite index in Z}

given by sending the open subgroup U ⊂ Gal(Fq/Fq) associated to a finite abelian extension

by the Galois correspondence to ρ−1
Fq

(U).

2.3. The case of cyclotomic fields. Assuming the Kronecker-Weber theorem, the maximal
abelian extension of K = Q is the union of all cyclotomic fields Q(µN ). Therefore,

Gal(Qab/Q) = lim←−
n

Gal(Q(µn)/Q)

= lim←−
n

(Z/nZ)×

def
= Ẑ×.

But we want to proceed the other way around, that is, to understand the structure of
Gal(Qab/Q) to prove the Kronecker-Weber theorem!
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3. Local fields

The next case to study is local fields. Let us give a few definitions:

Definition 3.1. Let K be a field. An absolute value | · | on K is a map | · | : K → R≥0

satisfying the following three properties:

• |0| = 0 and |1| = 1,

• |xy| = |x||y| for all x, y ∈ K;

• |x+ y| ≤ |x|+ |y| for all x, y ∈ K.

A field together with an absolute value will be called a valued field. We say that a valued
field is non-archimedean3 whenever the stronger inequality |x+ y| ≤ max(|x|, |y|) holds.

A valued field is equipped with the metric topology associated to the distance

d(x, y) = |x− y|.

Example 3.2.

(1) Let K = Q and p a prime number. Every non-zero rational number x can be written
as x = pumn for u ∈ Z and m,n ∈ Z not divisible by p. Then |x|p = p−u is a
non-archimedean absolute value on Q.

(2) Let k be a field and K = k((t)) the field of Laurent series with coefficients in k, i.e.
formal power series f =

∑
n∈Z ant

n such that, for negative n, only finitely many an
are non-zero. Fix a real number q > 1 and define |f | = q−n, where n is the smallest
integer such that an 6= 0. This is a non-archimedean absolute value on K.

Definition 3.3. Let K be a valued field.

(1) K is complete if the metric topology is complete, i.e. all Cauchy sequences converge.

(2) K is a local field if the absolute value is non-trivial and K is locally compact for the
metric topology.

Recall that locally compact means that every point has a compact neighborhood. All fields
are locally compact when endowed with the trivial absolute value |x| = 1 for all x ∈ K×, this
is why one needs to exclude it. It is easy to see that local fields are complete.

Example 3.4.

(1) The valued field (Q, | · |p) is not complete. The completion is the field Qp of p-adic
numbers, and there is a unique absolute value extending | · |p. It is a local field.

(2) The field of Laurent series k((t)), together with the above absolute value, is a complete
field. It is locally compact if and only if k is finite.

These are essentially all local fields. Precisely:

Proposition 3.5. Local fields fall into three classes:

• the fields R and C of real and complex numbers (archimedean local fields),

• finite extensions of Qp (p-adic fields),

• finite extensions of the field of Laurent series Fp((t)).
3also called ultrametric.
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The second two families of local fields share the property that K is a discrete valuation
field whose residue field is finite. This means that K comes together with a surjective group
morphism ν : K× → Z such that, setting ν(0) = +∞, the inequality

ν(x+ y) ≥ min(ν(x), ν(y))

holds for all x, y ∈ K. Then the subring4 OK ⊂ K consisting of those elements with ν(x) ≥ 0
has a unique maximal ideal m. The quotient κ = OK/m is called the residue field.

Example 3.6.

(1) For K = Qp, the valuation ring is OQp = Zp, the maximal ideal m = pZp and the
residue field is κ = Fp.

(2) For K = k((t)), the valuation ring is Ok((t)) = k[[t]], the maximal ideal m = tk[[t]]
and the residue field is κ = k.

3.1. Ramification. Let K be a complete discrete valuation field with finite residue field.

Lemma 3.7. Let L be a finite extension of K. There exists a unique discrete valuation νL
on L and an integer e > 0 such that νL(x) = e · νK(x) for all x ∈ K.

Definition 3.8. An extension L/K is called unramified if e = 1. The maximal unramified
extension Kur of K is the union of all finite unramified extensions K ⊆ L ⊆ Ksep.

Theorem 3.9. Let K be a complete discrete valuation field with finite residue field Fq. The
maximal unramified extension Kur is obtained by adjoining to K all roots of unity of orders
prime to p. In particular, Kur ⊆ Kab and

Gal(Kur/K) ' Gal(Fq/Fq). (2)

(This is the part of the Galois group which is the easiest to understand).

4. Local class field theory

Our first main goal in this course will be to prove the following:

Theorem 4.1 (Main theorem of local class field theory). Let K be a local field.

(1) There exists a unique continuous group morphism

ρK : K× −→ Gal(Kab/K) (3)

satisfying the following two conditions:

(a) For each finite abelian extension L of K, ρK induces an isomorphism of the
quotient groups

K×

��

ρK
// Gal(Kab/K)

��

K×/NL/K(L×)
∼ // Gal(L/K),

where NL/K : L→ K denotes the norm, given by NL/K(x) =
∏

Gal(L/K) σ(α).

4called the valuation ring
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(b) If K is a complete discrete valuation field with finite residue field Fq, then the
following diagram commutes

K×
ρK
//

νK

��

Gal(Kab/K)

��

Z
ρFq

// Gal(Fq/Fq).

Here, νK is the discrete valuation of K and the right vertical arrow is the com-
position Gal(Kab/K)→ Gal(Kur/K) with the isomorphism (2).

(2) There is a one-to-one correspondence between open subgroups of Gal(Kab/K) and
open subgroups of finite index of K× given by

U 7→ ρ−1
K (U).

An immediate corollary is the following:

Corollary 4.2. Let K be a local field. There is a one-to-one correspondence

{finite abelian extensions of K} 1:1←→ {open subgroups of finite index of K×}
which maps L/K to the subgroup NL/K(L×) of K×.

We will give two proofs, one based on group cohomology and the Brauer group, the other
through Lubin-Tate theory. For number fields, the main theorem of global class field theory
looks very similar, but K× is replaced by something more complicated, the group of ideles.
It is a quotient CK = A×K/K

× of the group of invertible elements in the ring of adeles

AK = {(xv)v ∈
∏
v

Kv | all but finitely many av belong to OKv}.

Example 4.3.

(1) When K = R, the only open subgroups of finite index of R× are R×>0 and R×. They
correspond to the extensions C and R respectively. The map

ρR : R× −→ Gal(C/R)

sends positive real numbers to 1 and negative real numbers to complex conjugation.

(2) Let p be a prime number different from 2. The theorem implies that there are exactly
p+ 1 abelian extensions of Qp of degree p.
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