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Recall from the introduction to the course that, given a complete discrete valued field K
with finite residue field Fq, the main theorem of local class field theory asserts the existence
of a continuous group morphism

ρK : K× −→ Gal(Kab/K),

such that: (1) for each finite abelian extension L/K, ρK induces an isomorphism

K×/NL/K(L×)
∼−→ Gal(L/K);

and (2) it fits into a commutative diagram

K×
ρK
//

νK

��

Gal(Kab/K)

��

Z
ρFq

// Gal(Fq/Fq).

Last week I explained the basics of infinite Galois theory, in particular, the structure of

the above Galois groups. Recall that Gal(Fq/Fq) is the profinite completion Ẑ of the integers
and the map ρFq sends 1 to the Frobenius automorphism x 7→ xq. Today and next week we
will properly introduce local fields and study their Galois theory. One of the main results will
be that there is a maximal unramified subextension K ⊆ Kur ⊆ Kab whose Galois group is
isomorphic to Gal(Fq/Fq). This yields, by restriction, the right vertical map.

1. Discrete valuation rings

Recall that a principal ideal domain is a commutative ring A which is an integral domain
(i.e. does not contain zero divisors) and has the property that every ideal is principal (i.e.
can be generated by a single element).

Definition 1.1. A discrete valuation ring is a principal ideal domain A which has a unique
non-zero1 prime ideal m. A generator π of m is called a uniformizer and the field2 κ = A/m
is called the residue field of A.

The group of invertible elements A× is equal to A \m (indeed, if x /∈ m, the ideal (x) has
to be the whole ring). It follows that, up to multiplication by an element of A×, the only

1Recall that (0) is a prime ideal in an integral domain
2In a principal ideal domain A all non-zero prime ideals are maximal. Indeed, if (x) is a prime ideal and

(x) ⊆ (y) but y /∈ x, then x = ty implies t = xz for some z ∈ A, hence yz = 1. But this shows that (y) = A.
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irreducible3 element of the ring is π. Therefore, every non-zero element x of A can be written
uniquely as x = uπn for an integer n ≥ 0 and an invertible element u ∈ A×. The integer
v(x) = n does not depend on the choice of the uniformizer and is called the valuation4 of x.
We extend v to A by setting v(0) = +∞. Then the function v : A→ Z≥0 ∪ {+∞} satisfies

v(x+ y) ≥ min(v(x), v(y)), v(xy) = v(x) + v(y). (1)

Let K be the fraction field of A. The valuation extends to K by setting

v(x/y) = v(x)− v(y),

which does not depend on the choice of representatives by (1). This yields a surjective group
morphism v : K× → Z such that

A = {x ∈ K | v(x) ≥ 0},
m = {x ∈ K | v(x) > 0}.

Both points of view are thus equivalent.

Lemma 1.2. Let K be a field, together with a surjective map v : K× → Z satisfying (1).
Then A = {x ∈ K | v(x) ≥ 0} is a discrete valuation ring (called the ring of integers of K).

Proof. Let π ∈ K× be an element such that v(π) = 1. Any x ∈ K× can then be written as
x = uπn with n = v(x) and v(u) = 0. Let u−1 be the inverse of u in K. Then v(u−1) = 0,
hence u belongs to A×. This shows that all the non-zero ideals of A are of the form πnA for
some n ≥ 0. Therefore, A is a discrete valuation ring. �

Example 1.3.

(1) Let p be a prime number. The subring Z(p) of Q given by

Z(p) = {xy | x, y ∈ Z, p does not divide y}

is a discrete valuation ring with maximal ideal pZ(p) consisting of those x/y such that
p divides x. The residue field is Fp and the field of fractions is Q. The associated
valuation vp : Q× → Z is given by v(x) = n if one writes x = pna/b with a and b not
divisible by p. It is called the p-adic valuation.

Remark 1.4. The ring Z(p) is the localisation of Z at the prime ideal p. More
generally, the localisation of a Dedekind domain (e.g. the ring of integers of a number
field) at a non-zero prime ideal is a discrete valuation ring.

(2) Let p be a prime number. Recall that we have canonical projections

Z/p←− Z/p2 ←− · · ·Z/pn−1 ϕn←− Z/pn ←− · · · (2)

and one defines the ring of p-adic integers as the limit

Zp = lim
n

Z/pnZ,

3Recall that an irreducible element is a nonzero non-unit element which cannot be written as a product of
two non-units.

4“Discrete” refers to the fact that v takes values in Z.



CLASS FIELD THEORY 3

which consists of sequences (xn)n such that xn ∈ Z/pn and ϕn(xn) = xn−1. It is a
discrete valuation ring with maximal ideal pZp and residue field Fp. The invertible
elements are those (xn)n with x1 6= 0. The valuation is given by

v(x) =

{
0 x ∈ Z×p
n greatest integer such that xn = 0.

Note that, if xn = 0, then xm = 0 for all m ≤ n by the compatibility with the
projections (2). The fraction field Qp = Frac(Zp) is the field of p-adic numbers.

(3) Let k be a field. The ring of formal power series

k[[t]] = {f =
+∞∑
n=0

ant
n | an ∈ k}

is a discrete valuation ring with maximal ideal tk[[t]] and residue field k. Its fraction
field is the field k((t)) of Laurent series, that is,

k((t)) = {f =
∑
n≥n0

ant
n | n0 ∈ Z, an ∈ k, an0 6= 0}.

The valuation assigns to f as above the integer n0.

Remark 1.5. These examples show that K and the residue field κ can have different charac-
teristics; it is called the mixed or unequal characteristic case. However, if K has characteristic
p > 0, then κ has characteristic p as well, and if κ has characteristic zero, then K has char-
acteristic zero. Here are the three possibilities:

K κ
char 0 0
char p p
char 0 p

2. Complete discrete valued fields

2.1. From valuations to absolute values. Let K be a discrete valued field as before,
v : K× → Z the valuation and A the ring of integers. Let 0 < a < 1 be a real number5. We
define a map

| · | : K → R≥0 (3)

by setting |0| = 0 and, for all x ∈ K×,

|x| = av(x).

It is immediate to verify that | · | satisfies the following three properties:

|x| = 0⇐⇒ x = 0

|xy| = |x||y|,
|x+ y| ≤ max(|x|, |y|).

Therefore, the map (3) is a non-archimedean (or ultrametric) absolute value on K.

5If the residue field is finite, with q elements, the standard choice will be a = q−1.
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Remark 2.1. The ring of integers of K is given by the elements with |x| ≤ 1. That this is
indeed a ring uses the fact that the absolute value is non-archimedean (the set of real numbers
with usual absolute value ≤ 1 is obviously not a subring of R).

To the absolute value is is attached the topology corresponding to the distance

d(x, y) = |x− y|,
and different choices of a give equivalent topologies. It is a totally disconnected topological
space, meaning that its connected components are exactly the singletons.

2.2. Complete fields. Recall that (K, | · |) is said to be complete if all Cauchy sequences6

(an)n converge to an element a of K, i.e. limn→+∞ |an − a| = 0.

Example 2.2.

(1) The field Q, together with the absolute value | · |p obtained from the p-adic valuation
is not complete. For instance, one can show that

xn =
n∑
j=0

pj
2

is a Cauchy sequence which does not converge to a rational number (do the exercise!).

(2) The field of Laurent series k((t)) is always complete.

Starting from a non-complete field K, there is a standard procedure to obtain a complete
one called completion. Namely, one considers the set R of all Cauchy sequences in K. Together
with termwise addition and multiplication, it is a ring. Null-sequences (i.e. those (an)n with
the property that, for all ε > 0, there exists N such that |an| < ε for all n ≥ N) form a
maximal ideal m. Then one defines the completion to be the quotient

K̂ = R/m.

The absolute value extends from K to K̂ by the rule

|(an)| = lim
n→+∞

|an|.

The limit exists because |an| is a Cauchy sequence of real numbers. The field K̂ is complete

for this absolute value and there is an injective map K ↪→ K̂ sending a to the constant Cauchy
sequence (a, a, . . .).

Example 2.3. The completion of (Q, | · |p) is the field Qp of p-adic numbers. Since Q 6= Qp,
this is an alternative way to show that Q is not complete.

The following proposition will be proved in the exercise session this week:

Proposition 2.4. A discrete valued field K is locally compact (i.e. every point has a compact
neighborhood) if and only if it is complete and the residue field is finite.

When the assumptions are satisfied, the ring of integers A = {x ∈ K | |x| ≤ 1} is compact.
It is then a Hausdorff, compact and totally disconnected group, hence a profinite group (see
Week 2). For example, Zp = limn Z/pn and k[[t]] = limn k[t]/tn.

6This means that, for all ε > 0, there exists an integer N such that |an − am| < ε for all m,n ≥ N .
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2.3. Local fields. We have now all the ingredients for the main definition:

Definition 2.5. A local field is a complete discrete valuation field with finite residue field.

�

This is not the definition from Week 1 (locally compact field for a non-trivial absolute
value), which also allows R and C to be local fields. Since their class field theory is kind of
trivial, we will not loose anything in adopting this more restrictive definition. Many parts of
the theory also work under the assumption that the residue field is perfect.

Example 2.6. Qp and Fq((t)) are examples of local fields. By Theorem 3.1 below, any finite
extension K/Qp is a local field as well (these are called p-adic fields). We will see that these
are actually all local fields.

3. Extensions

Throughout, K denotes a complete discrete valued field, v the valuation, A the ring of
integers and κ the residue field. If L/K is a finite extension, we let B denote the integral
closure of A in L, that is, the set of elements of L which are integral7 over A.

Theorem 3.1. Let L/K be a finite extension of degree n.

(a) B is a discrete valuation ring. It is a free A-module of rank n.

(b) Let pB be the unique non-zero prime ideal of B. Write pAB = peB for some e ≥ 1 and
let f be the degree of the extension B/pB of κ. Then ef = n.

(c) The field L is complete for the topology induced by B. There is a unique discrete
valuation w of L which induces on K the same topology as v. Explicitly,

w(x) =
1

f
v(NL/K(x)),

where NL/K is the norm of the extension (defined, for each x ∈ L, as the determinant
of the K-linear map L→ L “multiplication by x”).

This will be proved next time.

Definition 3.2. The integer e is called the ramification index and f is called the inertia
degree. An extension L/K is said to be

• unramified if e = 1 and B/pB is a separable field extension of κ,

• totally ramified if f = 1,

• tamely ramified if the characteristic of κ does not divide e.

One sees in particular that unramified extensions are tamely ramified. Many examples will
be given in the exercise sessions.

Remark 3.3. If x ∈ K×, then w(x) = 1
f v(xn) = n

f v(x) = ev(x), so the valuation w only

extends v if L/K is unramified. This is why the theorem says “induces the same topology”
rather than “extends the valuation”. In general, we cannot have an extension of v with
integral values.

7Recall that x ∈ L is integral over A if it satisfies an equation of the form xn + an−1x
n−1 + . . . + a0 = 0

with ai ∈ A.
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3.1. Unramified extensions. The composite of two unramified extensions is again unram-
ified, hence the following definition makes sense:

Definition 3.4. The union Kur of all unramified extensions of K inside a fixed separable
closure Ks of K is called the maximal unramified extension of K.

Theorem 3.5. Let K be a complete discrete valued field with ring of integers A and residue
field κ. For each finite separable extension l/κ, there exists a unique extension L/K whose
associated residue field extension is l/κ. Moreover, [L : K] = [l : κ] and L/K is Galois if and
only if l/κ is Galois. If this is the case, Gal(L/K) ' Gal(l/κ).

Corollary 3.6. The maximal unramified extension Kur is a Galois extension of K with Galois
group Gal(Kur/K) ' Gal(κs/κ).

Remark 3.7. The field Kur has a valuation extending v, but it may not be complete. The
example of the field of Laurent series will be discussed in the exercises.

Example 3.8. Let K be a local field. Then κ is finite, so for each n ≥ 0, there is a unique
degree n extension of κ. Correspondingly, the theorem affirms that K has a unique unramified
extension of degree n. Therefore,

Gal(Kur/K) ' Gal(κ/κ) ' Ẑ.
The image of x 7→ xq is called the Frobenius of Kur. Now, observe that all unramified
extensions of K are abelian, since Gal(L/K) ' Gal(`/κ) = Z/n. It follows that Kur ⊆ Kab.
By restriction one gets the map Gal(Kab/K)→ Gal(κ/κ) in the diagram of the main theorem
of local class field theory.
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