Exercise Sheet 1

Affine and Projective Varieties

General Rule: We recommend that you do, or at least try to, solve all unmarked problems. Problems marked * are additional ones that may be harder or may lead into directions not immediately covered by the course. Problems marked ** are challenge problems; if you try them, discuss your results with Prof. Pink.

Exercises 1 to 4 are taken or adapted from the book Algebraic Geometry by Hartshorne.

Let K be an algebraically closed field.

- 1. Identifying affine 2-space K^2 with $K^1 \times K^1$ in the natural way, show that the Zariski topology on K^2 is not the product topology of the Zariski topologies on the two copies of K^1 .
- 2. Fix a topological space X. By a subspace of X we always mean a subset with the induced topology. Prove:
 - (a) For any irreducible subspace Y the closure \overline{Y} is also irreducible.
 - (b) For any subspace Y we have $\dim Y \leq \dim X$.
 - (c) If $X = \bigcup_{i \in I} U_i$ for open subspaces U_i , then dim $X = \sup_{i \in I} \dim U_i$.
 - (d) Give an example of a noetherian topological space of infinite dimension.
- 3. Let $R := K[X_0, \ldots, X_n]$. For a homogeneous ideal $\mathfrak{a} \subset R_+$, show that the following conditions are equivalent:
 - (a) The zero locus $\overline{V}(\mathfrak{a})$ within $\mathbb{P}^n(K)$ is empty.
 - (b) Rad \mathfrak{a} contains the ideal $R_+ := \bigoplus_{d>0} R_d$.
 - (c) \mathfrak{a} contains R_d for some d > 0.
- 4. (*d-uple embedding*, or Veronese map) For given n, d > 0, let M_0, \ldots, M_N be all the monomials of degree d in the n + 1 variables X_0, \ldots, X_n , where $N = \binom{n+d}{d} 1$.
 - (a) Show that there is a well-defined injective map $\rho_d \colon \mathbb{P}^n(K) \to \mathbb{P}^N(K)$ sending $P = (a_0 : \ldots : a_n)$ to $\rho_d(P) := (M_0(a_0, \ldots, a_n) : \ldots : M_N(a_0, \ldots, a_n)).$
 - (b) Show that the image of ρ_d is a Zariski closed subvariety defined by equations of the form $Y_i Y_j = Y_k Y_\ell$ for certain tuples (i, j, k, ℓ) of integers in $\{0, \ldots, N\}$.
 - (c) Write down the image and the equations explicitly in the cases (n, d) = (1, 2)and (1, 3).

*5. (Discriminant locus) To each point $a = (a_0 : \ldots : a_n) \in \mathbb{P}^n(\mathbb{C})$ associate the non-zero homogeneous polynomial

$$f_a := a_0 S^n + a_1 S^{n-1} T + \ldots + a_n T^n \in \mathbb{C}[S,T],$$

which is well-defined up to a factor in \mathbb{C}^{\times} . Let $D \subset \mathbb{P}^n(\mathbb{C})$ denote the set of points a for which $V(f_a)$ has cardinality less than n. Prove that D is a projective variety and find equations for it.

6. Determine the closure of $V(XY - ZT) \subset K^4$ within $\mathbb{P}^4(K)$ and its singular points.