Exercise Sheet 11

PROPERTIES OF MORPHISMS, CONSTRUCTIBLE SETS

Exercise 2 is taken from Algebraic Geometry by Hartshorne. Exercise 6 is adapted from Algebraic Geometry I by Görtz and Wedhorn.

- 1. Is any open subscheme of any quasicompact scheme X quasicompact? What if X is noetherian?
- 2. Show by example that a surjective quasi-finite morphism of finite type need not be finite.
- 3. Prove that any finite morphism $f: X \to Y$ is projective.
- 4. Let \Box be one of the properties quasicompact, of finite type, locally of finite type, affine, integral, finite, projective, or quasiprojective.
 - (a) Show that a morphism $f: X \to Y$ is \Box if and only if there exists an open covering $Y = \bigcup_i V_i$ such that $f^{-1}(V_i) \to V_i$ is \Box for every *i*.
 - *(b) Consider two morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ such that $g \circ f$ is \Box . In which case does it follow that f is \Box ? Which additional condition on f or g would guarantee that?
- 5. Let X be a scheme of finite type over a field. Show that any constructible subset of X which contains all closed points of X is equal to X.
- 6. Let $f: X \to Y$ be a surjective morphism of finite type with Y noetherian. Show that a subset C of Y is constructible if and only if $f^{-1}(C)$ is constructible.
- *7. Let X be of finite type over a noetherian scheme S. Show that the set of points $s \in S$ where the fiber X_s has a fixed dimension d is constructible.