Algebraic Geometry

Exercise Sheet 13 RATIONAL MAPS, BLOWUPS

Exercises 2 to 4 are adapted from *Algebraic Geometry* by Hartshorne.

- **1. Consider schemes X and Y over a noetherian scheme S, such that Y is locally of finite type over S. Take a point $x \in X$, let $i: \operatorname{Spec} \mathcal{O}_{X,x} \to X$ be the canonical morphism, and consider a morphism $f: \operatorname{Spec} \mathcal{O}_{X,x} \to Y$ over S. Prove:
 - (a) There exists an open neighborhood $U \subset X$ of x and a morphism $\tilde{f}: U \to Y$ over S such that $\tilde{f} \circ i = f$.
 - (b) For any two pairs (U, \tilde{f}) and (U', \tilde{f}') as in (a) there exists an open neighborhood $V \subset U \cap U'$ of x such that $\tilde{f}|V = \tilde{f}'|V$.
 - (c) Do the same conclusions hold without the assumption that S is noetherian? If not, which other condition can one put in its place?
 - 2. Show that any integral scheme of finite type over a field k and of dimension r is birational to a hypersurface in \mathbb{P}_k^{r+1} .
 - 3. An integral scheme X of finite type over a field k is called *rational* if it is birationally equivalent to \mathbb{P}_k^n for some n. Prove:
 - (a) Any irreducible conic $C \subset \mathbb{P}^2_k$ with $C(k) \neq \emptyset$ is a rational curve.
 - (b) Let X be the nodal cubic curve $V(Y^2Z X^2(X + Z))$ in \mathbb{P}^2_k . Show that the projection from the point p = (0 : 0 : 1) to the line Z = 0 induces a birational map $\varphi \colon X \dashrightarrow \mathbb{P}^1_k$. Thus X is a rational curve. What are the maximal domains of definition of φ and φ^{-1} ?
 - 4. A birational map $\varphi \colon \mathbb{P}^2_k \dashrightarrow \mathbb{P}^2_k$ over a field k is called a *plane Cremona trans*formation. We give an example, called a *quadratic transformation*, given by $(a_0: a_1: a_2) \mapsto (a_1a_2: a_0a_2: a_0a_1)$ when no two of a_0, a_1, a_2 are zero.
 - (a) Show that φ is birational dominant and its own inverse.
 - (b) Find open subsets $U, V \subset \mathbb{P}^2$ such that $\varphi \colon U \to V$ is an isomorphism.
 - (c) Find the maximal open subset where φ is defined and the morphism on it.
- *5. Let F be the surface obtained from \mathbb{P}_k^2 by blowing up the three points (1:0:0), (0:1:0), and (0:0:1). Show that the plane Cremona transformation from the preceding exercise extends to an isomorphism $F \xrightarrow{\sim} F$.

(To construct F, identify each standard chart $D_{X_i} \subset \mathbb{P}^2_k$ with \mathbb{A}^2_k such that the respective given point corresponds to the origin $0 \in \mathbb{A}^2_k$, construct $\tilde{D}_{X_i} \to D_{X_i}$ as in the blowup of \mathbb{A}^2_k at the origin, then glue the \tilde{D}_{X_i} to a scheme F over \mathbb{P}^2_k .)