Exercise Sheet 2

Regular versus Singular Points, Categories

Let K be an algebraically closed field.

- 1. Consider the standard open affine covering $\mathbb{P}^n(K) = U_0 \cup \ldots \cup U_n$ with the maps $\iota_i \colon K^n \xrightarrow{\sim} U_i$. Let x be a point on a projective variety $X \subset \mathbb{P}^n(K)$. For each $0 \leq i \leq n$ with $x \in U_i$ let $R_{X,x,i}$ denote the local ring of $\iota_i^{-1}(X \cap U_i)$ at the point $\iota_i^{-1}(x)$. Show that for different *i* the rings $R_{X,x,i}$ are naturally isomorphic.
- 2. Let K be a field of characteristic 0. Determine the singular points and the dimensions of the Zariski cotangent spaces at these points for
 - (a) $V(I) \subset \mathbb{A}^3(K)$, where $I = (X^3 Z, Y^2 Z) \subset K[X, Y, Z]$,
 - (b) $\overline{V}(J) \subset \mathbb{P}^3$, where $J = (YZ^2 W^3) \subset K[X, Y, Z, W]$.
- *3. Let R be a noetherian local ring with maximal ideal \mathfrak{m} and residue field $k := R/\mathfrak{m}$. Prove that the following are equivalent.
 - (a) R is regular of dimension d.
 - (b) $\forall n \ge 0$: $\dim_k \mathfrak{m}^n / \mathfrak{m}^{n+1} = \binom{n+d-1}{d-1}$.
 - (c) gr $R := \bigoplus_{n \ge 0} \mathfrak{m}^n / \mathfrak{m}^{n+1} \cong k[X_1, \dots, X_d].$
 - (d) if $R \cong k \oplus \mathfrak{m}$: $\hat{R} \cong k[[X_1, \ldots, X_d]]$, where \hat{R} is the \mathfrak{m} -adic completion of R.
- 4. A morphism $f: X \to Y$ in a category C is called a *monomorphism* if for any object Z in C the map $Mor_{\mathcal{C}}(Z, X) \to Mor_{\mathcal{C}}(Z, Y), g \mapsto f \circ g$ is injective. A morphism is called an *epimorphism* if the corresponding morphism in the opposite category is a monomorphism. For which of the categories **Sets**, **Groups**, *R*-**Mod**, **Rings**, **Top**, is it true that a morphism is ...
 - (a) ... a monomorphism if and only if its underlying map is injective?
 - (b) ... an epimorphism if and only if its underlying map is surjective?
 - (c) ... an isomorphism if and only if it is both a mono- and an epimorphism?

- 5. Let \mathcal{C} be a category and $f, g \in \operatorname{Mor}_{\mathcal{C}}(X, X')$. The difference kernel of f and g is the limit $\varprojlim_{g} (X \stackrel{f}{\underset{g}{\Rightarrow}} X')$, if it exists.
 - (a) Explain the connection with the kernel when C is the category of *R*-modules. (Whence the name!)
 - (b) Define the dual notion of *difference cokernel* and explain its relation with the cokernel of an *R*-module homomorphism.
- 6. Express the following as a limit or colimit.
 - (a) A quotient of a topological space X by a subspace Y.
 - (b) The graph of a map of sets $f: X \to Y$.
 - (c) A module over a ring in terms of its finitely generated submodules.
 - (d) The fiber $f^{-1}(y)$ of a map of sets $f: X \to Y$.
 - (e) The quotient of a set X by an equivalence relation $E \subset X \times X$.
 - (f) The equivalence relation $E \subset X \times X$ generated by a relation $R \subset X \times X$.