
D-MATH Algebraic Geometry FS 2017
Prof. Richard Pink

Solutions Sheet 1
Affine and Projective Varieties

General Rule: We recommend that you do, or at least try to, solve all unmarked
problems. Problems marked ∗ are additional ones that may be harder or may lead into
directions not immediately covered by the course. Problems marked ∗∗ are challenge
problems; if you try them, discuss your results with Prof. Pink.

Exercises 1 to 4 are taken or adapted from the book Algebraic Geometry by Hartshorne.

Let K be an algebraically closed field.

1. Identifying affine 2-space K2 with K1 × K1 in the natural way, show that the
Zariski topology on K2 is not the product topology of the Zariski topologies on
the two copies of K1.

Solution: Let x and y be coordinates on K2. The diagonal in K2 is the affine
algebraic variety V (x−y) and thus a closed set. The Zariski topology on K1 is the
cofinite topology, where the proper closed subsets are precisely the finite subsets.
The proper closed subsets in the product topology on K1 ×K1 are therefore the
finite unions of horizontal and/or vertical lines and/or single points, which the
diagonal is not.

2. Fix a topological space X. By a subspace of X we always mean a subset with the
induced topology. Prove:

(a) For any irreducible subspace Y the closure Ȳ is also irreducible.

(b) For any subspace Y we have dimY 6 dimX.

(c) If X =
⋃
i∈I Ui for open subspaces Ui, then dimX = supi∈I dimUi.

(d) Give an example of a noetherian topological space of infinite dimension.

Solution: (a) Let Y ⊂ X be irreducible in the subspace topology and suppose
Ȳ = Y1 ∪ Y2, the union of two closed subsets of X. Then each Y ′i := Y ∩ Yi is
closed in the subspace topology on Y , and Y = Y ∩ Ȳ = Y ′1 ∪ Y ′2 . Thus Y = Y ′1 or
Y = Y ′2 , meaning that, say, Y ⊂ Y1. Then Ȳ ⊂ Ȳ1 = Y1 and so Ȳ = Y1, as desired.

(b) Any chain of irreducible closed subsets of Y is of the form (Y ∩X0) $ . . . $
(Y ∩Xn) for closed subsets X0, . . . , Xn of X. By (a), the closure Y ∩Xi of these
sets in X is also irreducible; hence Y ∩X0 $ . . . $ Y ∩Xn is a chain of irreducible
closed subsets of X. Varying the chain it follows that dimY 6 dimX.

(c) By (b) we have dimUi 6 dimX for all i, and thus supi∈I dimUi 6 dimX.
Conversely consider some chain X0 $ . . . $ Xn of irreducible closed subsets of X.
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Choose i such that Ui∩X0 is nonempty. Since X0 $ X1, the intersection of Ui with
X1 is nonempty as well. Since X1 is irreducible and Ui ∩X1 is a nonempty open
subset of X1, this intersection is dense in X1. Moreover X1 r X0 is a nonempty
open subset of X1, hence has nonempty intersection with Ui. This implies that
Ui ∩X0 is a proper subset of Ui ∩X1. Repeating this process, we obtain a strict
chain Ui ∩X0 $ . . . $ Ui ∩Xn of irreducible closed subsets of Ui. It follows that
dimUi > n. Varying n and i we conclude that supi∈I dimUi > dimX.

(d) Endow the set N = {0, 1, 2, . . .} with the topology where the closed sets are
all initial segments. Then any proper closed subset is finite; hence the descending
chain condition for closed subsets holds. Also, every non-empty closed subset is
irreducible. Thus {0} $ {0, 1} $ . . . is a strictly ascending chain of irreducible
closed subsets; hence the dimension is infinite. (The same argument works with
any infinite well-ordered set.)

3. Let R := K[X0, . . . , Xn]. For a homogeneous ideal a ⊂ R+, show that the following
conditions are equivalent:

(a) The zero locus V̄ (a) within Pn(K) is empty.

(b) Rad a contains the ideal R+ := � d>0Rd.

(c) a contains Rd for some d > 0.

Solution (sketch): (a)⇒(b): If V̄ (a) = ∅ in Pn(K), then in Kn+1 with coordinate
ring R we have V (a) ⊂ {0}. Therefore Rad(a) ⊃ I({0}) = R+.

(b)⇒(c): If Rad a contains R+, then Xi lies in Rad a for each i ∈ {0, . . . , n}.
Thus, there exists an r > 0 such that Xr

i lies in a for each i. Since Xr
i divides any

monomial of degree r(n+ 1), we have Rr(n+1) ⊂ (Xr
0 , . . . , X

r
n) ⊂ a.

(c)⇒(a): Suppose R+ ⊂ Rad a and assume V (a) is nonempty. For any point
P ∈ V (a) the monomials Xd

i vanish at P for each 0 6 i 6 n and every d > 0. But
this is impossible since P 6= (0 : . . . : 0).

4. (d-uple embedding, or Veronese map) For given n, d > 0, let M0, . . . ,MN be all the
monomials of degree d in the n+ 1 variables X0, . . . , Xn, where N =

(
n+d
d

)
− 1.

(a) Show that there is a well-defined injective map ρd : Pn(K)→ PN(K) sending
P = (a0 : . . . : an) to ρd(P ) := (M0(a0, . . . , an) : . . . : MN(a0, . . . , an)).

(b) Show that the image of ρd is a Zariski closed subvariety defined by equations
of the form YiYj = YkY` for certain tuples (i, j, k, `) of integers in {0, . . . , N}.

(c) Write down the image and the equations explicitly in the cases (n, d) = (1, 2)
and (1, 3).

Solution (sketch): (a) Write Mi(P ) := Mi(a0, . . . , an). Since the monomials Mi

are all homogeneous of degree d, we have Mi(λP ) = λdMi(P ) for each i and any
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λ ∈ K×; hence ρd(λP ) = ρd(P ) and so ρd(P ) is independent of the representative
of P . We also need to check that for any P ∈ Pn(K) at least one Mi(P ) is
nonzero. We have adk = Xd

k (P ) for each 0 6 k 6 n, and since P ∈ Pn(K) we have
Xd
k (P ) = adk 6= 0 for at least one k.

For injectivity, let Q = (b0 : . . . : bn) ∈ Pn(K) and suppose ρd(P ) = ρd(Q). We
may assume that ad0 = Xd

0 (P ) = 1. Then bd0 = 1 as well, and without loss of
generality a0 = b0 = 1. If bk 6= ak for some index k, then (Xd−1

0 Xk)(P ) = ak 6=
bk = (Xd−1

0 Xk)(Q), contradicting the assumption that ρd(P ) = ρd(Q).

(b) Let S be the set of polynomials YiYj − YkY` for all tuples (i, j, k, `) for which
MiMj = MkM`. Clearly, the image of ρd is contained in the variety V̄ (S). Con-
versely consider any point y = (y0 : . . . : yN) ∈ V̄ (S). Choose an index i with
yi 6= 0 and write Mi = Xν0

0 . . . Xνn
n . Without loss of generality we can assume that

ν0 > 0. For each 1 6 r 6 n take 0 6 j(r) 6 N with Mj(r) = Mi · Xr/X1, and
consider the point P := (yi : yj(1) : . . . : yj(n)) ∈ Pn(K). Then, using the defining
relations in several steps, show that ρd(P ) = y.

(c) For (n, d) = (1, 2) we have N = 2. Choose coordinates X0, X1 on P1(K) and
Y0, Y1, Y2 on P2(K). The 2-uple map is ρ2 : P1(K)→ P2(K) given by ρ2(x0 : x1) =
(x20 : x0x1 : x21). Using (b) its image is thus the variety V (Y 2

1 −Y0Y2), which is the
standard parabola.

For (n, d) = (1, 3) we have N = 3. Write the 3-uple map in the form ρ3(x0 : x1) =
(x30 : x20x1 : x0x

2
1 : x31). With the coordinates (Y0 : Y1 : Y2 : Y3) on P3(K), the image

is the twisted cubic determined by the three equations Y0Y2 = Y 2
1 and Y0Y3 = Y1Y2

and Y1Y3 = Y 2
2 .

*5. (Discriminant locus) To each point a = (a0 : . . . : an) ∈ Pn(C) associate the
non-zero homogeneous polynomial

fa := a0S
n + a1S

n−1T + . . .+ anT
n ∈ C[S, T ],

which is well-defined up to a factor in C×. Let D ⊂ Pn(C) denote the set of points
a for which V (fa) has cardinality less than n. Prove that D is a projective variety
and find equations for it.

Solution (sketch): Let ∆ denote the discriminant of the polynomial fa(S, 1), which
is a non-zero homogeneous polynomial in a0, . . . , an. By the main property of the
discriminant, for any point a = (1 : a1 : . . . : an) ∈ Pn(C) we have ∆(a) = 0 if and
only if fa(S, 1) has a multiple root. Thus U0 ∩ V̄ (∆) = U0 ∩ D. Next, a direct
calculation in the case a0an 6= 0 shows that the discriminant of the polynomial
fa(1, T ) is again ±∆. Thus the same argument shows that Un ∩ V̄ (∆) = Un ∩D.
Finally, both the defining condition of D and the discriminant are invariant under
the linear translation of coordinates (S, T ) 7→ (S, T + λS) for any λ ∈ C. Use this
to deduce that V̄ (∆) = D everywhere.
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6. Determine the closure of V (XY −ZT ) ⊂ K4 within P4(K) and its singular points.

Solution (sketch): Let x, y, z, t, u denote the coordinates on P4(K) and embed K4

into P4(K) via (x, y, z, t) 7→ (x : y : z : t : 1). The closure of V (XY −ZT ) in P4(K)
is the hypersurface defined by the polynomial f(X, Y, Z, T, U) := XY − ZT .

The set of singular points is V (f, ∂f
∂X
, ∂f
∂Y
, ∂f
∂Z
, ∂f
∂T
, ∂f
∂U

) ∈ P4(K), which is the single-
ton {(0 : 0 : 0 : 0 : 1)}.
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