D-MATH Algebraic Geometry FS 2017

Prof. Richard Pink .
Solutions Sheet 1

AFFINE AND PROJECTIVE VARIETIES

General Rule: We recommend that you do, or at least try to, solve all unmarked
problems. Problems marked * are additional ones that may be harder or may lead into
directions not immediately covered by the course. Problems marked *x are challenge
problems; if you try them, discuss your results with Prof. Pink.

Exercises 1 to 4 are taken or adapted from the book Algebraic Geometry by Hartshorne.

Let K be an algebraically closed field.

1. Identifying affine 2-space K? with K' x K' in the natural way, show that the
Zariski topology on K? is not the product topology of the Zariski topologies on
the two copies of K!.

Solution: Let z and y be coordinates on K?. The diagonal in K? is the affine
algebraic variety V (x —y) and thus a closed set. The Zariski topology on K is the
cofinite topology, where the proper closed subsets are precisely the finite subsets.
The proper closed subsets in the product topology on K! x K*! are therefore the
finite unions of horizontal and/or vertical lines and/or single points, which the
diagonal is not.

2. Fix a topological space X. By a subspace of X we always mean a subset with the
induced topology. Prove:

For any subspace Y we have dimY < dim X.

If X =J,.;U; for open subspaces U;, then dim X = sup,;.; dim U;.
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Solution: (a) Let Y C X be irreducible in the subspace topology and suppose
Y =Y, UY,, the union of two closed subsets of X. Then each Y/ =YnNnY,is
closed in the subspace topology on Y, and Y =Y NY =Y/ UY,. Thus Y = Y] or
Y =Yj, meaning that, say, Y C Y. Then Y C Y; = Y] and so Y =Y}, as desired.

(b) Any chain of irreducible closed subsets of Y is of the form (Y N Xy) & ... &
(Y N X,) for closed subsets Xy, ..., X, of X. By (a), the closure Y N X; of these
sets in X is also irreducible; hence Y N Xy & ... & Y N X, is a chain of irreducible

closed subsets of X. Varying the chain it follows that dimY < dim X.

(¢) By (b) we have dimU; < dim X for all 4, and thus sup,;c; dimU; < dim X.
Conversely consider some chain X ; . ; X,, of irreducible closed subsets of X.
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Choose i such that U;N X, is nonempty. Since X ; X1, the intersection of U; with
X is nonempty as well. Since X; is irreducible and U; N X; is a nonempty open
subset of X7, this intersection is dense in X;. Moreover X; . Xj is a nonempty
open subset of X;, hence has nonempty intersection with U;. This implies that
U; N Xy is a proper subset of U; N X;. Repeating this process, we obtain a strict
chain U; N X, ; e ; U; N X, of irreducible closed subsets of U;. It follows that
dim U; > n. Varying n and ¢ we conclude that sup,;; dim U; > dim X.

(d) Endow the set N = {0,1,2,...} with the topology where the closed sets are
all initial segments. Then any proper closed subset is finite; hence the descending
chain condition for closed subsets holds. Also, every non-empty closed subset is
irreducible. Thus {0} G {0,1} & ... is a strictly ascending chain of irreducible
closed subsets; hence the dimension is infinite. (The same argument works with
any infinite well-ordered set.)

. Let R := K[Xy,...,X,]. For a homogeneous ideal a C R, show that the following
conditions are equivalent:

(a) The zero locus V(a) within P™(K) is empty.

(b) Rada contains the ideal R, := FH 4o Ry

(¢) a contains Ry for some d > 0.
Solution (sketch): (a)=-(b): If V(a) = & in P*(K), then in K"+ with coordinate
ring R we have V(a) C {0}. Therefore Rad(a) D I({0}) = R..

(b)=(c): If Rada contains R, then X; lies in Rada for each i € {0,...,n}.
Thus, there exists an r > 0 such that X7 lies in a for each 7. Since X] divides any
monomial of degree 7(n + 1), we have R,41) C (X§,..., X)) C a.

(c)=-(a): Suppose R, C Rada and assume V(a) is nonempty. For any point
P € V(a) the monomials X vanish at P for each 0 < i < n and every d > 0. But
this is impossible since P # (0 : ... :0).

. (d-uple embedding, or Veronese map) For given n,d > 0, let My, ..., My be all the
monomials of degree d in the n + 1 variables Xy, ..., X,,, where N = (”;d) -1

(a) Show that there is a well-defined injective map pq: P*(K) — PV (K) sending
P=1(ap:...:a,) tops(P):=(Mo(ag,...,an):...: Mn(agp,...,a,)).

(b) Show that the image of py is a Zariski closed subvariety defined by equations
of the form Y;Y; = Y, Y, for certain tuples (i, j, k, ¢) of integers in {0,..., N}.

(c) Write down the image and the equations explicitly in the cases (n,d) = (1,2)
and (1, 3).

Solution (sketch): (a) Write M;(P) := M;(ay,...,a,). Since the monomials M;
are all homogeneous of degree d, we have M;(AP) = X\M;(P) for each i and any



*5.

A € K% hence pg(AP) = pg(P) and so py(P) is independent of the representative
of P. We also need to check that for any P € P"(K) at least one M;(P) is
nonzero. We have af = X?(P) for each 0 < k < n, and since P € P"(K) we have
X3(P) = af # 0 for at least one k.

For injectivity, let Q@ = (b : ... : b,) € P*(K) and suppose pq(P) = pa(Q). We
may assume that ad = X¢(P) = 1. Then b = 1 as well, and without loss of
generality ag = by = 1. If by # a for some index k, then (X$ ' X.)(P) = ap #
b = (X$'X3.)(Q), contradicting the assumption that pg(P) = pa(Q).

(b) Let S be the set of polynomials Y;Y; — Y, Y, for all tuples (i, j, k, ¢) for which
M;M; = M M,. Clearly, the image of py is contained in the variety V' (S). Con-
versely consider any point y = (yo : ... : yn) € V(S). Choose an index i with
y; # 0 and write M; = X° ... X*. Without loss of generality we can assume that
vp > 0. For each 1 < 7 < ntake 0 < j(r) < N with Mj,y = M; - X,/X;, and
consider the point P := (y; : yja) : ... : Yjm)) € P"(K). Then, using the defining
relations in several steps, show that py(P) = y.

(c) For (n,d) = (1,2) we have N = 2. Choose coordinates Xy, X; on P}(K) and
Yy, Y1, Yy on P?2(K). The 2-uple map is po: P1(K) — P?(K) given by pa(xg : 21) =
(23 : zoxy : 7). Using (b) its image is thus the variety V(Y2 — YY3), which is the
standard parabola.

For (n,d) = (1,3) we have N = 3. Write the 3-uple map in the form ps(zo : 1) =
(x3: 232y« xox} : 23). With the coordinates (Vg : Y7 @ Vs : ¥3) on P?(K), the image
is the twisted cubic determined by the three equations YyY; = Y and YYs = Y1 Y5
and Y3 = Y2

(Discriminant locus) To each point a = (ag : ... : a,) € P*(C) associate the
non-zero homogeneous polynomial

fo = apS" +a1S" T+ ... +a,T" € C[S,T],

which is well-defined up to a factor in C*. Let D C P"(C) denote the set of points
a for which V(f,) has cardinality less than n. Prove that D is a projective variety
and find equations for it.

Solution (sketch): Let A denote the discriminant of the polynomial f,(S, 1), which
is a non-zero homogeneous polynomial in aq, ..., a,. By the main property of the
discriminant, for any point a = (1:a; : ... : a,) € P*(C) we have A(a) = 0 if and
only if f,(S,1) has a multiple root. Thus Uy NV (A) = Uy N D. Next, a direct
calculation in the case aga, # 0 shows that the discriminant of the polynomial
f2(1,T) is again +A. Thus the same argument shows that U, NV (A) = U, N D.
Finally, both the defining condition of D and the discriminant are invariant under
the linear translation of coordinates (S,T") — (5,7 + AS) for any A € C. Use this
to deduce that V(A) = D everywhere.



6. Determine the closure of V(XY —ZT) C K* within P*(K) and its singular points.
Solution (sketch): Let x,vy, z,t,u denote the coordinates on P*(K) and embed K*
into P4(K) via (z,y,2,t) = (z:y: 2z :t:1). The closure of V(XY —ZT) in P*(K)
is the hypersurface defined by the polynomial f(X,Y,Z,T,U) := XY — ZT.

The set of singular points is V'(f, g—)’;, g—{;, g—£, %, %) € P4(K), which is the single-
ton {(0:0:0:0:1)}.



