Algebraic Geometry

Solutions Sheet 14

BLOWUPS, CURVES

Exercise 3 is taken from Algebraic Geometry I by Görtz and Wedhorn. Exercises 4 and 5 are adapted from Algebraic Geometry by Hartshorne.

1. Consider any coprime integers $p, q \ge 1$. Compute the strict transform of the affine curve $C_{p,q}$: $X^p + Y^q = 0$ under the blowup of \mathbb{A}^2_k in the origin. Deduce that a finite number of iterated blowups makes this curve regular, but the number of blowups needed may be arbitrarily large.

Solution: By the jacobian criterion, the singular points of $C_{p,q}$ are those where $X^p + Y^q = pX^{p-1} = qY^{q-1} = 0$. Since p and q are coprime, at least one of them is not divisible by the characteristic of k. Thus the last two equations imply that X = 0 or Y = 0, and then the first implies that X = Y = 0. Thus $C_{p,q}$ is always regular outside the origin (0, 0), and it is regular there if and only if min $\{p, q\} = 1$.

Writing $\mathbb{A}_k^2 = \operatorname{Spec} k[X, Y]$, the blowup is the union of the open charts $U := \operatorname{Spec} k[X, T]$ and $V := \operatorname{Spec} k[Y, S]$, where Y = XT and X = YS. After substitution the given equation becomes $X^p + X^q T^q = 0$, respectively $Y^p S^p + Y^q = 0$. Without loss of generality we may assume that $p \ge q$. Then after clearing powers of X, respectively Y, the strict transform $\tilde{C}_{p,q}$ is defined by the equation $X^{p-q} + T^q = 0$ on U, respectively by $Y^{p-q}S^p + 1 = 0$ on V. The last equation shows that $S \ne 0$ on $\tilde{C}_{p,q} \cap V$, hence $\tilde{C}_{p,q} \subset U$. The first equation then shows that $\tilde{C}_{p,q} \cong C_{p-q,q}$.

The passage from (p,q) to (p-q,q) strictly decreases p+q; hence on iteration the procedure stops when p-q=0. The fact that p and q are coprime then implies that p = q = 1. As $C_{1,1}$ is regular, the iterated blowups have made the curve regular. In the case $p \ge q = 1$ the number of required steps is p-1, which can be arbitrarily large.

- 2. Determine the strict transform of the following surface when blowing up the origin. Repeat the procedure in suitable local coordinates until no singular points are left.
 - (a) $V(X^2 + Y^2 + Z^3)$
 - *(b) (for masochists) $V(X^2 + Y^3 + Z^5)$

Solution: (a) By the jacobian criterion, the surface $S := V(X^2 + Y^2 + Z^3) \subset \mathbb{A}^3_k$ is regular outside the origin (0, 0, 0) in characteristic $\neq 2$. If char k = 2, then the singular locus is V(X + Y, Z).

Writing $\mathbb{A}_k^3 = \operatorname{Spec} k[X, Y, Z]$, consider first the open chart $W_1 := \operatorname{Spec} k[X, U, V]$ of the blowup of the origin, with Y = XU and Z = XV. Substituting the equation $X^2 + Y^2 + Z^3 = 0$, we obtain $X^2(1 + U^2 + XV^3) = 0$. After clearing powers of X, the strict transform \tilde{S} of S is defined by the equation $1 + U^2 + XV^3 = 0$ on W_1 . Similarly, in the open chart $W_2 := \operatorname{Spec} k[Y, T, V]$ with X = YT and Z = YV we find that the strict transform is defined by the equation $T^2 + 1 + YV^3 = 0$. In the last open chart $W_3 := \operatorname{Spec} k[Z, T, U]$ with X = ZT and Y = ZU, we obtain the equation $T^2 + U^2 + Z = 0$.

In characteristic $\neq 2$, the strict transform is regular. This can be checked in the charts using the jacobian criterion. In characteristic 2, it is regular on W_1 . On W_2 and W_3 the singular locus of \tilde{S} is given by V(T + 1, V) and V(U + 1, V), respectively.

- (b) Search for the resolution of the E_8 -singularity.
- 3. Let C be an integral curve over a field k. Show that C is proper over k if and only if its normalization \tilde{C} is proper over k.

Solution: If C is proper over k, it is in particular of finite type over k. Thus by Noether's theorem the canonical morphism $\pi: \tilde{C} \to C$ is finite. It is therefore proper, and so the composite morphism $\tilde{C} \to C \to \operatorname{Spec} k$ is proper, as desired.

For the converse recall that, by the construction of the normalization, for any non-empty open affine $U = \operatorname{Spec} A \subset C$ we have $\pi^{-1}(U) = \operatorname{Spec} \tilde{A}$, where \tilde{A} is the normalization of A in the function field $K(C) = \operatorname{Quot}(A)$. If \tilde{C} is proper over k, it is in particular of finite type over k, so \tilde{A} is a finitely generated k-algebra.

Suppose it is generated by a_1, \ldots, a_n . Then each a_i is a zero of some monic polynomial $f_i[T] \in A[T]$. Let $A' \subset A$ be the k-subalgebra generated by the coefficients of f_1, \ldots, f_n , which by construction is a finitely generated k-algebra. Then \tilde{A} is a finitely generated integral A'-algebra; hence it is finitely generated as an A'-module. Since A' is noetherian, the A'-submodule $A \subset \tilde{A}$ is then also finitely generated. Together this implies that A is a finitely generated k-algebra.

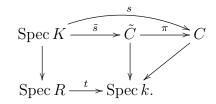
Varying U shows that C is locally of finite type over k. Moreover, as \hat{C} is of finite type over k, it is quasi-compact, so it is the union of finitely many such $\pi^{-1}(U)$. Thus C is the union of finitely many such U; hence C is of finite type over k.

Now we use the valuative criterion for properness. Consider any valuation ring R with field of fractions K and a commutative diagram

$$\begin{array}{ccc} \operatorname{Spec} K & \xrightarrow{s} C \\ & & \downarrow \\ & & \downarrow \\ \operatorname{Spec} R & \xrightarrow{t} & \operatorname{Spec} k. \end{array}$$

If the image of t is a closed point $P \in C$, the residue field k(P) is a finite extension of k. The fact that R is normal then implies that the homomorphism $s^{\flat} : k(P) \to K$ factors through R; and the corresponding morphism $\operatorname{Spec} R \to \operatorname{Spec} k(P) \to C$ is the unique lift of t making everything commute.

Assume now that the image of t is the generic point of C. Since $\pi: \tilde{C} \to C$ is birational, this means that we have a commutative diagram



As \tilde{C} is proper over k, there exists a lift \tilde{t}' : Spec $R \to \tilde{C}$ making everything commute; hence $\pi \circ \tilde{t}'$: Spec $R \to C$ makes the original diagram commute.

Conversely, consider any morphism \tilde{t} : Spec $R \to C$ making the original diagram commute. Then by the universal property of the normalization from Exercise Sheet 6, Problem 4, the morphism \tilde{t} lifts to a unique morphism \tilde{t}' : Spec $R \to \tilde{C}$ with $\pi \circ \tilde{t}' = \tilde{t}$. By the valuative criterion of properness for \tilde{C} over k, the morphism \tilde{t}' is unique; hence \tilde{t} is unique as well.

By the valuative criterion it now follows that C is proper over k, as desired.

- 4. Let k be an algebraically closed field. Let C be a regular integral curve that is separated of finite type over k which is birational to, but not isomorphic to \mathbb{P}_k^1 .
 - (a) Show that C is isomorphic to an open subset of \mathbb{A}^1_k .
 - (b) Show that C is affine.
 - (c) Show that the affine coordinate ring $\mathcal{O}_C(C)$ is a unique factorization domain.

Solution: (a) As C is regular of dimension 1 and \mathbb{P}^1_k is proper over k, any birational map $C \dashrightarrow \mathbb{P}^1_k$ over k extends uniquely to a morphism $f: C \to \mathbb{P}^1_k$ over k.

For any closed point $P \in C$, the residue field is a finite extension of k; hence so is the residue field of the image f(P), so this image is a closed point of \mathbb{P}^1_k . Since C and \mathbb{P}^1_k are both regular of dimension 1, the local rings at both points are discrete valuation rings. Also, since f is birational, the homomorphism of stalks $f^{\flat}: \mathcal{O}_{\mathbb{P}^1_k, f(P)} \to \mathcal{O}_{C,P}$ is injective and induces an isomorphism of quotient fields. With discrete valuation rings this is possible only when the homomorphism is an isomorphism.

Next, the valuative criterion for separatedness implies that P is uniquely determined by the subring $\mathcal{O}_{C,P} \subset K(C)$. The above isomorphism thus shows that P is determined by f(P), and so f is injective.

Since f is birational, its image contains an open dense subset of \mathbb{P}^1_k . The complement thereof is a finite set of closed points, any subset of which is again closed;

hence the complement of the image is closed, and the image itself is open. From the explicit description of the Zariski topologies on C and \mathbb{P}^1_k , namely as the cofinite topology on closed points and with one additional generic point, one deduces that f is a homeomorphism from C to its image. Since f also induces isomorphisms on all stalks, it is therefore an isomorphism of schemes from C to an open subscheme of \mathbb{P}^1_k , in other words an open embedding.

By assumption it is not an isomorphism; hence its image misses some closed point P. Since k is algebraically closed, this point is defined over k, so after applying a suitable automorphism of \mathbb{P}^1_k we may without loss of generality assume that $P = \infty$. Then we have an open embedding $C \hookrightarrow \mathbb{A}^1_k$, as desired.

(b) The complement of C is a closed set in \mathbb{A}^1_k , thus given by the zero set of some polynomial $f \in k[T]$, and so $C = D_f = \operatorname{Spec} k[T, f^{-1}]$ is affine.

(c) This follows from the fact that the localization $k[T, f^{-1}]$ of the unique factorization domain k[T] is a unique factorization domain.

- *5. Let k be an algebraically closed field of characteristic $\neq 2$. Let C be the curve $V(Y^2 X^3 + X) \subset \mathbb{A}^2_k$. In this exercise we will show that C is not birational to \mathbb{P}^1_k over k, hence its function field K(C) is not a pure transcendental extension of k.
 - (a) Show that C is nonsingular, and deduce that its coordinate ring $A := k[X, Y]/(Y^2 X^3 + X)$ is an integrally closed domain.
 - (b) Let k[x] be the subring of K := K(C) generated by the image of X in A. Show that k[x] is a polynomial ring, and that A is the integral closure of k[x] in K.
 - (c) Show that there is an automorphism $\sigma: A \to A$ which sends y to -y and leaves x fixed. For any $a \in A$, define the *norm* of a to be $N(a) := a \cdot \sigma(a)$. Show that $N(a) \in k[x]$ and N(1) = 1 and $N(ab) = N(a) \cdot N(b)$ for any $a, b \in A$.
 - (d) Using the norm, show that the units in A are precisely the nonzero elements of k. Show that x and y are irreducible elements of A. Deduce that A is not a unique factorization domain.
 - (e) Use the previous exercise to prove that C is not birational to \mathbb{P}^1_k over k.

Solution (sketch): (a) Since $Y^2 - X^3 + X$ is an irreducible polynomial in the unique factorization domain k[X, Y], the coordinate ring A is an integral domain. Also C is regular by the jacobian criterion. Thus each point $p \in C$ is regular, and so each local ring $\mathcal{O}_{C,p}$ is regular and thus normal. It follows that $A = \bigcap_{p \in C} \mathcal{O}_{C,p}$ is normal, as desired.

(b) To show that k[x] is a polynomial ring, check that x is transcendental using basic algebra. Since $y^2 \in k[x]$, it follows that y and thus A is contained in the

integral closure of k[x], and equality follows from the fact that A is normal as shown in (a).

(c) The ring homomorphism $k[X, Y] \to k[X, Y]$ defined by $X \mapsto X$ and $Y \mapsto -Y$ is an automorphism and maps the ideal $(Y^2 - X^3 + X)$ to itself. Thus it induces the desired automorphism σ .

Any $a \in A$ can be written as a = yf + g for some $f, g \in k[x]$, thus $N(a) = (x - x^3)f^2 + g^2$ is in k[x]. The other equalities follow from the fact that σ is an automorphism of k-algebras.

(d) Clearly $k^{\times} \subset A^{\times}$. Conversely, if $a \in A$ is a unit, then N(a) is a unit in k[x], i.e., $N(a) \in k^{\times}$. Write a = yf + g as in (c), so that $N(a) = (x - x^3)f^2 + g^2$. Thus

$$\deg(N(a)) = \begin{cases} 3+2\deg(f) & \text{if } 2+\deg(f) \ge \deg(g), \\ 2\deg(g) & \text{if } 1+\deg(f) \le \deg(g). \end{cases}$$

But $N(a) \in k^{\times}$ implies that $\deg(N(a)) = 0$, which leaves only the second case with f = 0 and $\deg(g) = 0$, in other words with $a = g \in k^{\times}$.

The above formula also implies that there are no elements $a \in A$ with $\deg(N(a)) = 1$. Since $N(x) = x^2$ and $N(y) = x - x^3 = x(x - 1)(x + 1)$ are of degree 2 and 3, it follows that x and y are irreducible. Finally, since $y \cdot y = x - x^3 = x(x - 1)(x + 1)$ and y is not associated to x, we conclude that A cannot be a unique factorization domain.

(e) Since C is regular by (a) and not isomorphic to \mathbb{P}^1_k , if C were rational, then by the previous exercise A would be a unique factorization domain, which by (d) it is not.