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Prof. Richard Pink

Solutions Sheet 14

Blowups, Curves

Exercise 3 is taken from Algebraic Geometry I by Görtz and Wedhorn. Exercises 4 and 5
are adapted from Algebraic Geometry by Hartshorne.

1. Consider any coprime integers p, q > 1. Compute the strict transform of the affine
curve Cp,q : Xp+Y q = 0 under the blowup of A2

k in the origin. Deduce that a finite
number of iterated blowups makes this curve regular, but the number of blowups
needed may be arbitrarily large.

Solution: By the jacobian criterion, the singular points of Cp,q are those where
Xp + Y q = pXp−1 = qY q−1 = 0. Since p and q are coprime, at least one of them
is not divisible by the characteristic of k. Thus the last two equations imply that
X = 0 or Y = 0, and then the first implies that X = Y = 0. Thus Cp,q is always
regular outside the origin (0, 0), and it is regular there if and only if min{p, q} = 1.

Writing A2
k = Spec k[X, Y ], the blowup is the union of the open charts U :=

Spec k[X,T ] and V := Spec k[Y, S], where Y = XT and X = Y S. After substi-
tution the given equation becomes Xp + XqT q = 0, respectively Y pSp + Y q = 0.
Without loss of generality we may assume that p > q. Then after clearing pow-
ers of X, respectively Y , the strict transform C̃p,q is defined by the equation
Xp−q + T q = 0 on U , respectively by Y p−qSp + 1 = 0 on V . The last equation
shows that S 6= 0 on C̃p,q ∩V , hence C̃p,q ⊂ U . The first equation then shows that
C̃p,q ∼= Cp−q,q.

The passage from (p, q) to (p− q, q) strictly decreases p+ q; hence on iteration the
procedure stops when p − q = 0. The fact that p and q are coprime then implies
that p = q = 1. As C1,1 is regular, the iterated blowups have made the curve
regular. In the case p > q = 1 the number of required steps is p− 1, which can be
arbitrarily large.

2. Determine the strict transform of the following surface when blowing up the origin.
Repeat the procedure in suitable local coordinates until no singular points are left.

(a) V (X2 + Y 2 + Z3)

*(b) (for masochists) V (X2 + Y 3 + Z5)

Solution: (a) By the jacobian criterion, the surface S := V (X2 + Y 2 + Z3) ⊂ A3
k

is regular outside the origin (0, 0, 0) in characteristic 6= 2. If char k = 2, then the
singular locus is V (X + Y, Z).
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Writing A3
k = Spec k[X, Y, Z], consider first the open chart W1 := Spec k[X,U, V ]

of the blowup of the origin, with Y = XU and Z = XV . Substituting the equation
X2 + Y 2 +Z3 = 0, we obtain X2(1 +U2 +XV 3) = 0. After clearing powers of X,
the strict transform S̃ of S is defined by the equation 1 + U2 + XV 3 = 0 on W1.
Similarly, in the open chart W2 := Spec k[Y, T, V ] with X = Y T and Z = Y V we
find that the strict transform is defined by the equation T 2 + 1 +Y V 3 = 0. In the
last open chart W3 := Spec k[Z, T, U ] with X = ZT and Y = ZU , we obtain the
equation T 2 + U2 + Z = 0.

In characteristic 6= 2, the strict transform is regular. This can be checked in the
charts using the jacobian criterion. In characteristic 2, it is regular on W1. On
W2 and W3 the singular locus of S̃ is given by V (T + 1, V ) and V (U + 1, V ),
respectively.

(b) Search for the resolution of the E8-singularity.

3. Let C be an integral curve over a field k. Show that C is proper over k if and only
if its normalization C̃ is proper over k.

Solution: If C is proper over k, it is in particular of finite type over k. Thus by
Noether’s theorem the canonical morphism π : C̃ → C is finite. It is therefore
proper, and so the composite morphism C̃ → C → Spec k is proper, as desired.

For the converse recall that, by the construction of the normalization, for any
non-empty open affine U = SpecA ⊂ C we have π−1(U) = Spec Ã, where Ã is the
normalization of A in the function field K(C) = Quot(A). If C̃ is proper over k,
it is in particular of finite type over k, so Ã is a finitely generated k-algebra.

Suppose it is generated by a1, . . . , an. Then each ai is a zero of some monic
polynomial fi[T ] ∈ A[T ]. Let A′ ⊂ A be the k-subalgebra generated by the
coefficients of f1, . . . , fn, which by construction is a finitely generated k-algebra.
Then Ã is a finitely generated integral A′-algebra; hence it is finitely generated
as an A′-module. Since A′ is noetherian, the A′-submodule A ⊂ Ã is then also
finitely generated. Together this implies that A is a finitely generated k-algebra.

Varying U shows that C is locally of finite type over k. Moreover, as C̃ is of finite
type over k, it is quasi-compact, so it is the union of finitely many such π−1(U).
Thus C is the union of finitely many such U ; hence C is of finite type over k.

Now we use the valuative criterion for properness. Consider any valuation ring R
with field of fractions K and a commutative diagram

SpecK

��

s // C

��
SpecR t // Spec k.

If the image of t is a closed point P ∈ C, the residue field k(P ) is a finite extension
of k. The fact thatR is normal then implies that the homomorphism s[ : k(P )→ K
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factors through R; and the corresponding morphism SpecR→ Spec k(P )→ C is
the unique lift of t making everything commute.

Assume now that the image of t is the generic point of C. Since π : C̃ → C is
birational, this means that we have a commutative diagram

SpecK

��

s̃ //

s

((
C̃

��

π // C

||
SpecR t // Spec k.

As C̃ is proper over k, there exists a lift t̃′ : SpecR → C̃ making everything
commute; hence π ◦ t̃′ : SpecR→ C makes the original diagram commute.

Conversely, consider any morphism t̃ : SpecR → C making the original diagram
commute. Then by the universal property of the normalization from Exercise
Sheet 6, Problem 4, the morphism t̃ lifts to a unique morphism t̃′ : SpecR → C̃
with π◦ t̃′ = t̃. By the valuative criterion of properness for C̃ over k, the morphism
t̃′ is unique; hence t̃ is unique as well.

By the valuative criterion it now follows that C is proper over k, as desired.

4. Let k be an algebraically closed field. Let C be a regular integral curve that is
separated of finite type over k which is birational to, but not isomorphic to P1

k.

(a) Show that C is isomorphic to an open subset of A1
k.

(b) Show that C is affine.

(c) Show that the affine coordinate ring OC(C) is a unique factorization domain.

Solution: (a) As C is regular of dimension 1 and P1
k is proper over k, any birational

map C 99K P1
k over k extends uniquely to a morphism f : C → P1

k over k.

For any closed point P ∈ C, the residue field is a finite extension of k; hence
so is the residue field of the image f(P ), so this image is a closed point of P1

k.
Since C and P1

k are both regular of dimension 1, the local rings at both points are
discrete valuation rings. Also, since f is birational, the homomorphism of stalks
f [ : OP1

k,f(P ) → OC,P is injective and induces an isomorphism of quotient fields.
With discrete valuation rings this is possible only when the homomorphism is an
isomorphism.

Next, the valuative criterion for separatedness implies that P is uniquely deter-
mined by the subring OC,P ⊂ K(C). The above isomorphism thus shows that P
is determined by f(P ), and so f is injective.

Since f is birational, its image contains an open dense subset of P1
k. The comple-

ment thereof is a finite set of closed points, any subset of which is again closed;
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hence the complement of the image is closed, and the image itself is open. From the
explicit description of the Zariski topologies on C and P1

k, namely as the cofinite
topology on closed points and with one additional generic point, one deduces that
f is a homeomorphism from C to its image. Since f also induces isomorphisms on
all stalks, it is therefore an isomorphism of schemes from C to an open subscheme
of P1

k, in other words an open embedding.

By assumption it is not an isomorphism; hence its image misses some closed point
P . Since k is algebraically closed, this point is defined over k, so after applying
a suitable automorphism of P1

k we may without loss of generality assume that
P =∞. Then we have an open embedding C ↪→ A1

k, as desired.

(b) The complement of C is a closed set in A1
k, thus given by the zero set of some

polynomial f ∈ k[T ], and so C = Df = Spec k[T, f−1] is affine.

(c) This follows from the fact that the localization k[T, f−1] of the unique factor-
ization domain k[T ] is a unique factorization domain.

*5. Let k be an algebraically closed field of characteristic 6= 2. Let C be the curve
V (Y 2−X3 +X) ⊂ A2

k. In this exercise we will show that C is not birational to P1
k

over k, hence its function field K(C) is not a pure transcendental extension of k.

(a) Show that C is nonsingular, and deduce that its coordinate ring A := k[X, Y ]/
(Y 2 −X3 +X) is an integrally closed domain.

(b) Let k[x] be the subring of K := K(C) generated by the image of X in A.
Show that k[x] is a polynomial ring, and that A is the integral closure of k[x]
in K.

(c) Show that there is an automorphism σ : A → A which sends y to −y and
leaves x fixed. For any a ∈ A, define the norm of a to be N(a) := a · σ(a).
Show that N(a) ∈ k[x] and N(1) = 1 and N(ab) = N(a) · N(b) for any
a, b ∈ A.

(d) Using the norm, show that the units in A are precisely the nonzero elements
of k. Show that x and y are irreducible elements of A. Deduce that A is not
a unique factorization domain.

(e) Use the previous exercise to prove that C is not birational to P1
k over k.

Solution (sketch): (a) Since Y 2−X3+X is an irreducible polynomial in the unique
factorization domain k[X, Y ], the coordinate ring A is an integral domain. Also
C is regular by the jacobian criterion. Thus each point p ∈ C is regular, and so
each local ring OC,p is regular and thus normal. It follows that A =

⋂
p∈C OC,p is

normal, as desired.

(b) To show that k[x] is a polynomial ring, check that x is transcendental using
basic algebra. Since y2 ∈ k[x], it follows that y and thus A is contained in the
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integral closure of k[x], and equality follows from the fact that A is normal as
shown in (a).

(c) The ring homomorphism k[X, Y ]→ k[X, Y ] defined by X 7→ X and Y 7→ −Y
is an automorphism and maps the ideal (Y 2 −X3 +X) to itself. Thus it induces
the desired automorphism σ.

Any a ∈ A can be written as a = yf + g for some f, g ∈ k[x], thus N(a) =
(x − x3)f 2 + g2 is in k[x]. The other equalities follow from the fact that σ is an
automorphism of k-algebras.

(d) Clearly k× ⊂ A×. Conversely, if a ∈ A is a unit, then N(a) is a unit in k[x],
i.e., N(a) ∈ k×. Write a = yf + g as in (c), so that N(a) = (x− x3)f 2 + g2. Thus

deg(N(a)) =

{
3 + 2 deg(f) if 2 + deg(f) > deg(g),
2 deg(g) if 1 + deg(f) 6 deg(g).

But N(a) ∈ k× implies that deg(N(a)) = 0, which leaves only the second case
with f = 0 and deg(g) = 0, in other words with a = g ∈ k×.

The above formula also implies that there are no elements a ∈ A with deg(N(a)) =
1. Since N(x) = x2 and N(y) = x− x3 = x(x− 1)(x+ 1) are of degree 2 and 3, it
follows that x and y are irreducible. Finally, since y · y = x− x3 = x(x− 1)(x+ 1)
and y is not associated to x, we conclude that A cannot be a unique factorization
domain.

(e) Since C is regular by (a) and not isomorphic to P1
k, if C were rational, then by

the previous exercise A would be a unique factorization domain, which by (d) it
is not.
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