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Equivalence of Categories, Representable and Adjoint Functors

1. Give an example of a functor that does not preserve monomorphisms. Dito for
epimorphisms.

Solution: Let f : X → Y be an arbitrary morphism in a category C. Let 2 be the
category with two distinct objects ξ and η and precisely one morphism ϕ : ξ → η
besides the two identity morphisms idξ and idη, and the only possible way of defin-
ing composites. Then ϕ is both a monomorphism and an epimorphism (but no
isomorphism). Let F : 2 → C be the functor with Fξ = X and Fη = Y and
F idξ = idX and F idη = idY and Fϕ = f . Thus if f is neither a monomorphism
nor an epimorphism, as for example for the zero morphism Z → Z in the cate-
gory of Z-modules, we get a functor that preserves neither monomorphisms nor
epimorphisms.

(Explanation: The property of being a mono- or epimorphism involves a quantifi-
cation over all objects of a category. So if a functor is not essentially surjective on
objects or not surjective on morphisms, such properties in the source category are
usually not enough to guarantee the corresponding property in the target category.
Note that this objection does not apply to isomorphisms, because they are defined
by the explicit formulas for a two-sided inverse, not by a universal property.)

2. Consider a functor F : C → D. The functor is called fully faithful if for all X,X ′ ∈
Ob(C) the map FX,X′ : MorC(X,X

′) → MorD(FX,FX ′) is bijective. It is called
essentially surjective if for any Y ∈ Ob(D) there exists X ∈ Ob(C) such that
FX ∼= Y . Prove that F is part of an equivalence of categories if and only if it is
fully faithful and essentially surjective.

Solution: See Theorem IV.4.1 in Categories for the Working Mathematician by
Saunders Mac Lane

3. Show that equivalence of categories is an equivalence relation.

Solution (sketch): Symmetry is immediate from the definition of equivalence of cat-
egories. For reflexivity take F = G = idC. It remains to show transitivity. Suppose

C F→ D G→ C and D F ′
→ E G′

→ D are equivalences of categories. Let η : idC
∼−→ GF

and ξ : idD
∼−→ FG, as well as η′ : idD

∼−→ G′F ′ and ξ′ : idE
∼−→ F ′G′ denote

the respective natural isomorphisms of functors. Since any functor preserves iso-
morphisms, we have that Gη′FX : GFX → GG′F ′FX is an isomorphism for ev-
ery X ∈ Ob(C). Thus, so is θX := Gη′FX ◦ ηX : X → GG′F ′FX. Similarly
θ′X := F ′ξG′X ◦ ξX : X → F ′FGG′X is an isomorphism for each X ∈ Ob(E).
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Check that this yields two natural isomorphisms of functors θ : idC
∼−→ GG′F ′F

and θ′ : idE
∼−→ F ′FGG′, hence an equivalence of categories C F ′F→ E GG′

→ C.

4. Show that the category of sets is not equivalent to its opposite category.

Hint : Play around with initial and final objects and products and coproducts.

Solution: Any equivalence with its opposite category interchanges initial with final
objects and products with coproducts, and any theorem involving these translates
into a dual one. It therefore suffices to find a property involving these whose
corresponding dual property does not hold.

In the category of sets the unique initial object is the empty set; the final objects
are precisely the singletons {a}. The product of two objects X, Y is the cartesian
product X × Y , the coproduct the “exterior disjoint union” X × {1} ∪ Y × {2}.
The product of twice an initial object is therefore again an initial object. But the
coproduct of twice a final object is a set with two elements and not a final object.

*5. Let Cat denote the category of small categories with functors as morphisms. Let
F : Cat → Sets be the functor that sends a small category C to the set Mor(C).
Prove that F is corepresentable.

Solution (sketch): F is corepresented by the two-object category 2, defined in the
solution to Problem 1 above.

6. Show that the tensor product M ⊗R N corepresents the functor R-Mod→ Sets,
L 7→ BilinR(M ×N,L).

Solution: The universal property of the tensor product says that for every L the
map

α : HomR(M ⊗R N,L) −→ BilinR(M ×N,L), f 7→ (α(f) : (m,n) 7→ f(m⊗ n))

is bijective. In addition, for any R-module homomorphism g : L → L′ and any
f ∈ HomR(M ⊗R N,L) the calculation

(g ◦α(f))(m,n) = g(α(f)(m,n)) = g(f(m⊗n)) = (g ◦ f)(m⊗n) = α(g ◦ f)(m,n)

shows that the bijection is functorial in L, in other words a natural transformation
of functors of L. It is thus an isomorphism of functors HomR(M ⊗R N,−)

∼−→
BilinR(M ×N,−), as desired.

*7. Fix topological spaces X and Y and consider the functor Topopp → Sets, Z 7→
MorTop(Z × Y,X). Under what conditions is this functor representable?

Solution (sketch): First, consider the problem on Sets, i.e. for the corresponding
functor F : Sets → Sets, Z 7→ MorSets(Z × Y,X). Let XY denote the set of
maps Y → X. Every map f : Z × Y → X corresponds to a map Z → XY ,
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z 7→ fz := f(z,−). Conversely, every map g : Z → XY induces a map Z×Y → X
by setting g(z, y) := g(z)(y). The calculation

(g ◦ (f × idY ))(z, y) = g(f(z), y) = g(f(z))(y) = (g ◦ f)(z)(y)

shows that this bijection MorSets(Z × Y,X) ←→ MorSets(Z,X
Y ) is functorial

in Z. By uniqueness of representatives, we can thus deduce that XY represents F .
For the functor in the exercise, it is natural to replace XY by the set C(Y,X)
of continuous functions Y → X, endowed with some topology. However, neither
of the maps Z → C(Y,X), z 7→ fz and Z × Y → X, (z, y) 7→ g(z)(y) induced
by f and g, respectively, are continuous in general. But a standard theorem from
topology states that if C(Y,X) is endowed with the compact-open topology and Y
is locally compact Hausdorff, then for any topological space Z any map Z×Y → X
is continuous if and only if the induced map Z → C(Y,X) is (see, for example,
Theorem 46.11 in Topology, Second Edition by James R. Munkres).

8. Consider the forgetful functor Top→ Sets mapping any topological space to the
underlying set and any continuous map to the underlying map. Does this functor
have a left or right adjoint, and if so, which?

Solution (sketch): Both: It has a left adjoint which equips a given set with the
discrete topology and a right adjoint which equips a given set with the indiscrete
topology.
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