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Solutions Sheet 6

Schemes and Subschemes

Exercises 1 and 4 are taken or adapted from Algebraic Geometry by Hartshorne. Exer-
cises 2, 3, 6 and 7 are from Algebraic Geometry I by Görtz and Wedhorn.

1. Let ϕ : R → S be a ring homomorphism and let f : Y := SpecS → SpecR =: X
be the induced morphism of affine schemes.

(a) Show that ϕ is injective if and only if the homomorphism of sheaves f [ : OX →
f∗OY is. Show furthermore in that case f(Y ) is dense in X.

(b) Show that if ϕ is surjective, then f is a homeomorphism of Y onto a closed
subset of X and f [ is surjective.

(c) Prove the converse to (b), namely, if f : Y → X is a homeomorphism onto a
closed subset and f [ : OX → f∗OY is surjective, then ϕ is surjective.

Hint: Consider X ′ := Spec(R/ kerϕ) and use (a) and (b).

Solution: (a) The ‘if’ part follows from the fact that f [X = ϕ, using a proposition
from the lecture. Conversely, if ϕ is injective, then so is the induced map on
localizations Ra → Sϕ(a) for every a ∈ R. These maps are the maps f [Da

, so f is
injective on a base of open sets, hence on every stalk. Exercise 4(a), Sheet 4 now
implies that f is injective. To show that f(Y ) is dense in X, it suffices to show
that for any nonempty basic open set Da with a ∈ R, the intersection Da ∩ f(Y )
is nonempty, i.e., there exists some p ∈ SpecS such that f(p) ∈ Da. Suppose not.
Using f(p) = ϕ−1(p) and the definition of Da, this means that a ∈ ϕ−1(p) for
every prime p ⊂ S and thus ϕ(a) ∈

⋂
p∈SpecS p = radS. So ϕ(a) is nilpotent and

since ϕ is injective, it follows that a is nilpotent. By Commutative Algebra this
implies that Da is empty.

(b) Note that ϕ : R → S factors as R
π
� R/ kerϕ

ϕ̃
↪→ S. By equivalence of

categories, it follows that (f, f [) factors as (g, g[) ◦ (h, h[), where (g, g[) is the
morphism corresponding to π and (h, h[) is the morphism corresponding to ϕ̃. If
ϕ is surjective, then ϕ̃ is an isomorphism and thus h : SpecS → Spec(R/ kerϕ) =:
X ′ is a homeomorphism, again by equivalence of categories. Check that g is a
homeomorphism of X ′ onto the closed subset V (kerϕ) ⊂ SpecR = X and thus
f is a homeomorphism of Y onto V (kerϕ) ⊂ X. For surjectivity of f [, it suffices
to check this on stalks. Let x ∈ X and sx ∈ (f∗OY )x. Let Dy be a basic open
set containing x and let s ∈ OY (f−1(Da)) be a section with germ sx at x. Note
that OY (f−1(Da)) = OY (Df(a)) = Sϕ(a). Since ϕ is surjective, so is the induced
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homomorphism on localizations Ra → Sϕ(a), which is given by f [Da
. Thus we can

choose a section t ∈ OX(Da) = Ra which is mapped to s under f [Da
and we obtain

tx = (f [Da
(s))x = f [x(sx); hence f [ is surjective on stalks and therefore surjective.

(c) Consider again the morphisms (g, g[) and (h, h[) from part (b). Since π : R�
R/ kerϕ is surjective and ϕ̃ is injective, by parts (a) and (b) we have that h(Y )
is dense in X ′ and g is a homeomorphism of X ′ onto a closed subset of X. Since
by assumption f is a homeomorphism of Y onto a closed subset of X, it follows
that h(Y ) is both dense and closed in X ′, thus h is surjective and from f = g ◦ h
it follows that h is a homeomorphism Y → X ′. Also by parts (a) and (b) we have
that h[ is injective and g[ is surjective. Since f [ is by assumption surjective, it
follows that h[ is a bijection. Together with h being a homeomorphism we conclude
that SpecS ∼= Spec(R kerϕ) and thus ϕ̃ : R/ kerϕ → S is an isomorphism by
equivalence of categories, hence ϕ is surjective.

2. Let (Ri)i∈I be a family of nonzero rings.

(a) Prove that
∐

i∈I SpecRi
∼= Spec(

∏
i∈I Ri) if I is finite.

(b) Prove that
∐

i∈I SpecRi is not an affine scheme if I is infinite.
Hint: Test for quasi-compactness.

Solution (sketch): (a) By a proposition in the lecture, the functor Spec is part
of a contravariant equivalence from Rings to the category of affine schemes. In
particular, it sends products to coproducts, and vice versa. The product in Rings
is the cartesian product and the coproduct in the category of affine schemes is
disjoint union. More explicitly, reduce to the case where |I| = 2. Then a bijection
between Spec(R1 × R2) and Spec(R1) t Spec(R2) results from the fact that the
prime ideals of R1 ×R2 are precisely those of the form p×R2 where p is a prime
ideal of R1, or R1 × q where q is a prime ideal of R2.

(b) By a proposition in the lecture, any affine scheme is quasicompact. How-
ever, an infinite disjoint union of nonempty quasicompact spaces is clearly not
quasicompact; hence

∐
i∈I SpecRi cannot be an affine scheme.

3. Let R be a principal ideal domain (or more generally a Dedekind ring), and let
f ∈ R be a nonzero element. Describe the affine scheme X := SpecR/fR (its
underlying topological space, the stalks OX,x, and OX(U) for every subset U of
X) in terms of the decomposition of f into prime factors.

Solution: Let (f) =
∐r

i=1 p
νi
i be the prime decomposition with distinct maximal

ideals pi and all νi > 1. Then R/(f) ∼=
⊕r

i=1R/p
νi
i , and so X := SpecR/(f) ∼=∐r

i=1 SpecR/pνii by the preceding exercise. Also, each R/pνii is a local ring with
precisely one prime ideal pi/p

νi
i . Thus SpecR/pνii is a topological space with one

point xi and the stalk R/pνii . For any subset U ⊂ X the sheaf property implies
that OX(U) ∼=

∏
i : xi∈U R/p

νi
i .
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4. A scheme is normal if all of its local rings are integrally closed domains. Let X
be an integral scheme. For each open affine subset U = SpecR of X, let R̃ be the
integral closure of R in its quotient field, and let Ũ = Spec R̃. Show that one can
glue the schemes Ũ to obtain a normal integral scheme X̃, called the normalization
of X. Show also that there is a morphism X̃ → X with the following universal
property: for every normal integral scheme Z every morphism f : Z → X with
f(Z) dense in X factors uniquely through X̃.

Solution: See Proposition 1.22 in Section 4.1 of Algebraic Geometry and Arithmetic
Curves by Qing Liu.

5. Set X := SpecK[X, Y ] for a field K, and let 0 denote its point corresponding to
the maximal ideal (X, Y ) ⊂ K[X, Y ]. Show that the open subscheme U := Xr{0}
is not affine.
Hint: Determine OX(U) using the standard open subsets DX and DY .

Solution (sketch): The subscheme U is the union of the two standard open sub-
sets DX

∼= SpecK[X±1, Y ] and DY
∼= SpecK[X, Y ±1], whose intersection is the

standard open subset DXY
∼= SpecK[X±1, Y ±1]. By the sheaf property we deduce

that OX(U) is the inverse limit of the diagram

K[X±1, Y ]→ K[X±1, Y ±1]← K[X, Y ±1].

As the maps are injective, the inverse limit is simply the intersection. Using the
common Z2-grading on these rings, we quickly calculate that OX(U) ∼= K[X, Y ].
More precisely, this shows that the given restriction map induces an isomorphism
K[X, Y ] = OX(X)

∼→ OX(U). If U were affine, the equivalence of categories
between affine schemes and (the opposite category of the category of) rings would
imply that the inclusion morphism U ↪→ X is an isomorphism, which it isn’t.

6. Let X be an irreducible scheme, and let η ∈ X be its generic point. Prove that
the intersection of all non-empty open subsets of X is {η}.
Solution: By the lecture every non-empty open subset of X contains η. Conversely,
by the uniqueness of η, for any x ∈ X r {η} we have {x} 6= X and hence η 6∈ {x}.
Thus X r {x} is an open neighborhood of η that does not contain x.

*7. Let Y be an irreducible scheme with generic point η and let f : X → Y be a
morphism of schemes. Show that the map Z 7→ f−1(η)∩Z is a bijective map from
the set of irreducible components of X meeting f−1(η) onto the set of irreducible
components of f−1(η), and the generic point of Z is the generic point of f−1(η)∩Z.

Solution: For any irreducible component Z ⊂ X meeting f−1(η), its image f(Z)
is dense in Y because it contains the generic point of Y . Let z be the generic
point of Z, which exists by a proposition from the lecture because Z is irreducible.
Then f(Z) = f({z}) ⊂ {f(z)}, thus Y = f(Z) ⊂ {f(z)} ⊂ Y . Together with
uniqueness of the generic point of Y , this implies that η = f(z). Further Z ∩
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f−1(η) is the closure of z in f−1(η) and thus irreducible. On the other hand,
any irreducible subset of f−1(η) containing z must be contained in Z ∩ f−1(η),
hence Z ∩ f−1(η) is an irreducible component of f−1(η). Since all irreducible
components of f−1(η) are contained in an irreducible component of X, we have
that every irreducible component Z of X meeting f−1(η) admits a generic point
which lies in f−1(η); this yields the desired bijection .

8. What’s wrong about [Görtz-Wedhorn, Prop.3.27 (2)]? Find 3 more mistakes in
this otherwise commendable book.

Solution: One must add that X is non-empty.

*9. (Moduli space of tuples of distinct points) Fix n > 2. For any ring R set

Mn(R) :=
{

(x1, . . . , xn) ∈ An(R)
∣∣ ∀i < j : xi − xj ∈ R×

}
,

Mn(R) := Mn(R)/B(R),

where B(R) is the group of invertible affine linear substitutions x 7→ ax + b with
a ∈ R× and b ∈ R, acting by (x1, . . . , xn) 7→ (ax1 + b, . . . , axn + b). Show that
both Mn and Mn extend naturally to contravariant functors from the category
of affine schemes to the category of sets. Show that these are representable by
certain explicit affine schemes.

Solution (sketch): The functors Mn and Mn are represented by SpecRn and
SpecRn for

Rn := Z[Xi|16i6n, 1
Xi−Xj

|16i<j6n],

R̄n := R̃n/(X1, X2 − 1)

For Mn this is a direct calculation. For Mn first show that the functor is iso-
morphic to the subfunctor M′

n of Mn that is defined by the additional condi-
tions x1 = 0 and x2 = 1. The reason for this is that for any tuple (x1, . . . , xn) ∈
Mn(R) there exist unique a ∈ R× and b ∈ R such that (ax1 + b, . . . , axn + b) =
(0, 1, ∗, . . . , ∗). Finally, by the same calculation as for Mn the subfunctor M′

n is
representable by SpecRn.
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