Algebraic Geometry

Solutions Sheet 9

FIBER PRODUCTS, SCHEMES OVER FIELDS

Exercise 2 is from Algebraic Geometry I by Görtz and Wedhorn.

1. Let K be a field. Let $f \in K[X, Y, Z]$ be a nonzero homogeneous polynomial of degree d > 0 and $C := V(f) \subset \mathbb{P}_K^2$ the associated closed subscheme. For any nonzero $\ell \in K[X, Y, Z]$ homogeneous of degree 1 consider the associated line $L := V(\ell) \subset \mathbb{P}_K^2$. Show that if $L \nsubseteq C$, the scheme-theoretic intersection $L \cap C$ is finite of degree d over K, i.e., isomorphic to Spec R for some K-algebra R of dimension d over K.

Solution: By Problem 7 of Exercise Sheet 8, the scheme-theoretic intersection is the closed subscheme associated to the graded ideal (f, ℓ) and hence isomorphic to $\operatorname{Proj} K[X, Y, Z]/(f, \ell)$. After a linear change of coordinates we may without loss of generality assume that $\ell = Z$, so that $K[X, Y, Z]/(f, \ell) \cong K[X, Y]/(g)$ with $g \in K[X, Y]$ homogeneous of degree d. Here the assumption $L \nsubseteq C$ implies that $g \neq 0$.

If K is infinite, there are infinitely many linear polynomials in K[X,Y], so after another linear change of coordinates we may assume that $X \nmid g$. Then $L \cap C$ is contained in the basic open subset $D_X \cong \operatorname{Spec} K[\frac{Y}{X}]$ of $\operatorname{Proj} K[X,Y]$ and hence isomorphic to $\operatorname{Spec} K[\frac{Y}{X}]/(\frac{g(X,Y)}{X^d}) \cong \operatorname{Spec} K[y]/(g(1,y))$. Since g is homogeneous of degree d, the assumption $X \nmid g$ implies that $\dim_K K[y]/(g(1,y)) = \deg g(1,y) =$ d, as desired.

If K is finite, reduce to the previous case by base change from Spec K to Spec \overline{K} .

- 2. Let k be a field. Describe the fibers in all points of the following morphisms Spec $B \rightarrow$ Spec A corresponding in each case to the canonical homomorphism $A \rightarrow B$. Which fibers are irreducible or reduced?
 - (a) Spec $k[T, U]/(TU 1) \rightarrow \text{Spec } k[T].$
 - (b) Spec $k[T, U]/(T^2 U^2) \rightarrow \text{Spec } k[T].$
 - (c) Spec $k[T, U]/(T^2 + U^2) \rightarrow \text{Spec } k[T].$
 - (d) Spec $k[T, U]/(TU) \to \text{Spec } k[T]$.
 - (e) Spec $k[T, U, V, W]/((U+T)W, (U+T)(U^3 + U^2 + UV^2 V^2)) \rightarrow \text{Spec } k[T].$
 - (f) Spec $\mathbb{Z}[T] \to \operatorname{Spec} \mathbb{Z}$.
 - (g) Spec $\mathbb{Z}[T]/(T^2+1) \to \operatorname{Spec} \mathbb{Z}$.

- (h) $\operatorname{Spec} \mathbb{C} \to \operatorname{Spec} \mathbb{Z}$.
- (i) Spec $A/\mathfrak{a} \to \text{Spec } A$, where \mathfrak{a} is some ideal of A.

Solution: By definition the fiber over a point $\mathfrak{p} \in \operatorname{Spec} A$ is $\operatorname{Spec} B \times_{\operatorname{Spec} A} \operatorname{Spec} k(\mathfrak{p}) \cong \operatorname{Spec}(B \otimes_A k(\mathfrak{p}))$. In parts (a) to (d) we can write B = A[U]/(f) for some polynomial $f \in k[T, U]$, and consequently $B \otimes_A k(\mathfrak{p}) \cong k(\mathfrak{p})[U]/(f(t, U))$, where $t \in k(\mathfrak{p})$ is the value of T at the point \mathfrak{p} .

(a) Here k[T, U]/(TU-1) is isomorphic to the localization $k[T, T^{-1}]$ of k[T], so the morphism Spec $k[T, U]/(TU-1) \rightarrow \text{Spec } k[T]$ is the embedding of the standard open subset obtained by removing the closed subset V(T). Thus the fiber over a point \mathfrak{p} is \emptyset for $\mathfrak{p} = (T)$ and $\text{Spec } k(\mathfrak{p})$ otherwise. In either case it is reduced, but only in the second case it is irreducible.

(b) If char $k \neq 2$ and $\mathfrak{p} \neq (T)$, the two values $\pm t \in k(\mathfrak{p})$ are distinct, and by the Chinese Remainder Theorem we have $k(\mathfrak{p})[U]/(U^2 - t^2) \cong k(\mathfrak{p})[U]/(U - t) \times k(\mathfrak{p})[U]/(U + t) \cong k(\mathfrak{p})^2$, whose spectrum is reduced, but not irreducible (the underlying space is a disjoint union of two points). If char k = 2 or $\mathfrak{p} = (T)$, we have $k(\mathfrak{p})[U]/(U^2 - t^2) \cong k(\mathfrak{p})[U]/(U - t)^2 \cong k(\mathfrak{p})[V]/(V)^2$, whose spectrum is irreducible, but not reduced, being a point with multiplicity 2.

(c) If char k = 2 or $\mathfrak{p} = (T)$, a calculation as in (b) shows that $k(\mathfrak{p})[U]/(U^2 + t^2) \cong k(\mathfrak{p})[U]/(U + t)^2 \cong k(\mathfrak{p})[V]/(V)^2$, whose spectrum is irreducible, but not reduced. Otherwise, if $k(\mathfrak{p})$ contains a solution *i* of the equation $X^2 + 1 = 0$, a calculation as in (b) shows that $k(\mathfrak{p})[U]/(U^2 + t^2) \cong k(\mathfrak{p})[U]/(U - it) \times k(\mathfrak{p})[U]/(U + it) \cong k(\mathfrak{p})^2$, whose spectrum is reduced, but not irreducible. In the remaining case the equation $X^2 + 1 = 0$ has no solution in $k(\mathfrak{p})$; hence the polynomial $U^2 + t^2$ is irreducible in $k(\mathfrak{p})[U]$ and $k(\mathfrak{p})[U]/(U^2 + t^2)$ is a field; so the fiber is both irreducible and reduced.

(d) For $\mathfrak{p} \neq (T)$ we have $t \in k(\mathfrak{p})^{\times}$ and hence $k(\mathfrak{p})[U]/(tU) \cong k(\mathfrak{p})$; while for $\mathfrak{p} = (T)$ we have t = 0 and hence $k(\mathfrak{p})[U]/(tU) = k(\mathfrak{p})[U]$. Correspondingly the fiber is $\mathbb{A}^{0}_{k(\mathfrak{p})}$, respectively $\mathbb{A}^{1}_{k(\mathfrak{p})}$. In both cases the ring is an integral domain; so the fiber is both irreducible and reduced.

(e) Set $f := U^3 + U^2 + UV^2 - V^2$; then $B \otimes_A k(\mathfrak{p}) \cong k(\mathfrak{p})[U, V, W]/(U+t) \cdot (W, f)$. Its spectrum is a closed subscheme of $\mathbb{A}^3_{k(\mathfrak{p})}$. For the underlying set (though not necessarily for the subscheme) we have $V((U+t) \cdot (W, f)) = V(U+t) \cup V((W, f))$. Here V(U+t) is a plane parallel to the (V, W)-coordinate plane, and V((W, f)) is the curve defined by f within the (U, V)-coordinate plane. Neither of these is contained in the other; hence the fiber is reducible.

If char k = 2, then $f = (U+1)(U+V)^2$ and the ring $k(\mathfrak{p})[U, V, W]/(U+t) \cdot (W, f)$ contains nilpotents. Thus, in this case, the fibers are all non-reduced.

If char $k \neq 2$, then $f = (U+1)U^2 + (U-1)V^2$ is primitive as a polynomial in V over k[U] because $(U+1)U^2$ and U-1 are coprime, and irreducible over k(U)

because $-(U+1)U^2/(U-1)$ has no square root in k(U). Thus f is irreducible in $k[U, V] \cong k[U, V, W]/(W)$; hence (W, f) is a prime ideal. In particular it is its own radical. For any value of t, check that the product (U+t)(W, f) is equal to the intersection $(U+t) \cap (W, f)$. It follows that the ideal (U+t)(W, f) is radical: $\operatorname{Rad}((U+t)(W, f)) = \operatorname{Rad}(U+t) \cap \operatorname{Rad}(W, f) = (U+t) \cap (W, f) = (U+t)(W, f)$, and thus the ring $k(\mathfrak{p})[U, V, W]/(U+t) \cdot (W, f)$ contains no nilpotents and all fibers are reduced.

(f) Here Spec $\mathbb{Z}[T] = \mathbb{A}^1_{\mathbb{Z}}$; hence for any $\mathfrak{p} \in \text{Spec } \mathbb{Z}$ the fiber is Spec $k(\mathfrak{p})[T] = \mathbb{A}^1_{k(\mathfrak{p})}$, which is both irreducible and reduced.

(g) By the same arguments as in (c) the ring $B \otimes_A k(\mathfrak{p}) \cong k(\mathfrak{p})[T]/(T^2+1)$ is

$$\begin{cases} \cong k(\mathfrak{p})[U]/(U^2) & \text{if } T^2 + 1 = 0 \text{ has a double solution in } k(\mathfrak{p}), \\ \cong k(\mathfrak{p})^2 & \text{if } T^2 + 1 = 0 \text{ has two distinct solutions in } k(\mathfrak{p}), \\ \text{a field} & \text{if } T^2 + 1 = 0 \text{ has no solution in } k(\mathfrak{p}). \end{cases}$$

Here the first case occurs if $\mathfrak{p} = (2)$, the second if $\mathfrak{p} = (p)$ for a prime $p \equiv 1$ (4), and the third for all other prime ideals (because \mathbb{F}_p^{\times} has order p-1 and $\sqrt{-1} \notin \mathbb{Q}$). Accordingly, the fiber is irreducible but not reduced, respectively reduced but not irreducible, respectively irreducible and reduced.

(h) The fiber over the generic point (0) has the coordinate ring $\mathbb{C} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{C}$ and is therefore irreducible and reduced. For any prime p we have $\mathbb{C} \otimes_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z} = 0$; hence the fiber is empty and thus reduced, but not irreducible.

(i) For any $\mathfrak{p} \in \operatorname{Spec} A$, we have $k(\mathfrak{p}) = S^{-1}(A/\mathfrak{p})$ with $S := (A/\mathfrak{p}) \smallsetminus \{0\}$, and hence

 $A/\mathfrak{a} \otimes_A k(\mathfrak{p}) \cong S^{-1}(A/\mathfrak{a} \otimes_A A/\mathfrak{p}) \cong S^{-1}A/(\mathfrak{a} + \mathfrak{p}).$

In the case $\mathfrak{a} \subset \mathfrak{p}$ this is simply $k(\mathfrak{p})$ again. Otherwise the image of S in $A/(\mathfrak{a} + \mathfrak{p})$ contains 0; hence the ring is zero.

3. Let k be a field. Consider $X := \mathbb{A}_k^2 = \operatorname{Spec} k[X, Y]$ and $\mathbb{P}_k^1 = \operatorname{Proj} k[T, U]$. Let \tilde{X} denote the closed subscheme of $X \times_k \mathbb{P}_k^1$ defined by the equation XU = TY. Determine the irreducible components and the fibers of \tilde{X} and $\tilde{X} \times_X \tilde{X}$ over X. Solution (sketch): Let $O \in X$ denote the origin and set $U := X \setminus \{O\}$. Then the membrium $\pi \colon \tilde{X} \to X$ induces an isomerphism $\pi^{-1}(U) \to U$. Thus for any point

morphism $\pi: \tilde{X} \to X$ induces an isomorphism $\pi^{-1}(U) \to U$. Thus for any point $x \in U$, the fiber over x is Spec k(x). The fiber over O is a copy of the projective line \mathbb{P}_k^1 . Also \tilde{X} is irreducible. For a detailed explanation as well as a proof of the last statement, see for example Hartshorne, p. 28.

Since fiber product commutes with taking fibers, any fiber of $\tilde{X} \times_X \tilde{X} \to X$ is the product of two copies of the fiber of $\tilde{X} \to X$, which is therefore again Spec k(x), respectively $\mathbb{P}^1_k \times \mathbb{P}^1_k$. Also $\tilde{X} \times_X \tilde{X}$ is the union of the image of the diagonal embedding of \tilde{X} and the fiber $\mathbb{P}^1_k \times \mathbb{P}^1_k$ over O. Both of these are irreducible of dimension 2, and none of them is contained in the other; hence these are the irreducible components of $\tilde{X} \times_X \tilde{X}$.