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Solutions Sheet 9

Fiber Products, Schemes over Fields

Exercise 2 is from Algebraic Geometry I by Görtz and Wedhorn.

1. Let K be a field. Let f ∈ K[X, Y, Z] be a nonzero homogeneous polynomial
of degree d > 0 and C := V (f) ⊂ P2

K the associated closed subscheme. For
any nonzero ` ∈ K[X, Y, Z] homogeneous of degree 1 consider the associated line
L := V (`) ⊂ P2

K . Show that if L * C, the scheme-theoretic intersection L ∩ C
is finite of degree d over K, i.e., isomorphic to SpecR for some K-algebra R of
dimension d over K.

Solution: By Problem 7 of Exercise Sheet 8, the scheme-theoretic intersection is
the closed subscheme associated to the graded ideal (f, `) and hence isomorphic to
ProjK[X, Y, Z]/(f, `). After a linear change of coordinates we may without loss
of generality assume that ` = Z, so that K[X, Y, Z]/(f, `) ∼= K[X, Y ]/(g) with
g ∈ K[X, Y ] homogeneous of degree d. Here the assumption L * C implies that
g 6= 0.

If K is infinite, there are infinitely many linear polynomials in K[X, Y ], so after
another linear change of coordinates we may assume that X - g. Then L ∩ C is
contained in the basic open subset DX

∼= SpecK[ Y
X

] of ProjK[X, Y ] and hence

isomorphic to SpecK[ Y
X

]/(g(X,Y )
Xd ) ∼= SpecK[y]/(g(1, y)). Since g is homogeneous

of degree d, the assumption X - g implies that dimK K[y]/(g(1, y)) = deg g(1, y) =
d, as desired.

If K is finite, reduce to the previous case by base change from SpecK to Spec K̄.

2. Let k be a field. Describe the fibers in all points of the following morphisms
SpecB → SpecA corresponding in each case to the canonical homomorphism
A→ B. Which fibers are irreducible or reduced?

(a) Spec k[T, U ]/(TU − 1)→ Spec k[T ].

(b) Spec k[T, U ]/(T 2 − U2)→ Spec k[T ].

(c) Spec k[T, U ]/(T 2 + U2)→ Spec k[T ].

(d) Spec k[T, U ]/(TU)→ Spec k[T ].

(e) Spec k[T, U, V,W ]/((U + T )W, (U + T )(U3 + U2 + UV 2 − V 2))→ Spec k[T ].

(f) SpecZ[T ]→ SpecZ.

(g) SpecZ[T ]/(T 2 + 1)→ SpecZ.
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(h) SpecC→ SpecZ.

(i) SpecA/a→ SpecA, where a is some ideal of A.

Solution: By definition the fiber over a point p ∈ SpecA is SpecB ×SpecA Spec k(p)
∼= Spec(B ⊗A k(p)). In parts (a) to (d) we can write B = A[U ]/(f) for some
polynomial f ∈ k[T, U ], and consequently B ⊗A k(p) ∼= k(p)[U ]/(f(t, U)), where
t ∈ k(p) is the value of T at the point p.

(a) Here k[T, U ]/(TU−1) is isomorphic to the localization k[T, T−1] of k[T ], so the
morphism Spec k[T, U ]/(TU − 1) → Spec k[T ] is the embedding of the standard
open subset obtained by removing the closed subset V (T ). Thus the fiber over a
point p is ∅ for p = (T ) and Spec k(p) otherwise. In either case it is reduced, but
only in the second case it is irreducible.

(b) If char k 6= 2 and p 6= (T ), the two values ±t ∈ k(p) are distinct, and by
the Chinese Remainder Theorem we have k(p)[U ]/(U2 − t2) ∼= k(p)[U ]/(U − t)×
k(p)[U ]/(U + t) ∼= k(p)2, whose spectrum is reduced, but not irreducible (the
underlying space is a disjoint union of two points). If char k = 2 or p = (T ), we
have k(p)[U ]/(U2 − t2) ∼= k(p)[U ]/(U − t)2 ∼= k(p)[V ]/(V )2, whose spectrum is
irreducible, but not reduced, being a point with multiplicity 2.

(c) If char k = 2 or p = (T ), a calculation as in (b) shows that k(p)[U ]/(U2 + t2) ∼=
k(p)[U ]/(U + t)2 ∼= k(p)[V ]/(V )2, whose spectrum is irreducible, but not reduced.
Otherwise, if k(p) contains a solution i of the equation X2+1 = 0, a calculation as
in (b) shows that k(p)[U ]/(U2 + t2) ∼= k(p)[U ]/(U − it)×k(p)[U ]/(U + it) ∼= k(p)2,
whose spectrum is reduced, but not irreducible. In the remaining case the equation
X2 + 1 = 0 has no solution in k(p); hence the polynomial U2 + t2 is irreducible
in k(p)[U ] and k(p)[U ]/(U2 + t2) is a field; so the fiber is both irreducible and
reduced.

(d) For p 6= (T ) we have t ∈ k(p)× and hence k(p)[U ]/(tU) ∼= k(p); while for
p = (T ) we have t = 0 and hence k(p)[U ]/(tU) = k(p)[U ]. Correspondingly the
fiber is A0

k(p), respectively A1
k(p). In both cases the ring is an integral domain; so

the fiber is both irreducible and reduced.

(e) Set f := U3 +U2 +UV 2−V 2; then B⊗A k(p) ∼= k(p)[U, V,W ]/(U + t) · (W, f).
Its spectrum is a closed subscheme of A3

k(p). For the underlying set (though not

necessarily for the subscheme) we have V ((U+t)·(W, f)) = V (U + t) ∪ V ((W, f)).
Here V (U + t) is a plane parallel to the (V,W )-coordinate plane, and V ((W, f))
is the curve defined by f within the (U, V )-coordinate plane. Neither of these is
contained in the other; hence the fiber is reducible.

If char k = 2, then f = (U + 1)(U +V )2 and the ring k(p)[U, V,W ]/(U + t) · (W, f)
contains nilpotents. Thus, in this case, the fibers are all non-reduced.

If char k 6= 2, then f = (U + 1)U2 + (U − 1)V 2 is primitive as a polynomial in
V over k[U ] because (U + 1)U2 and U − 1 are coprime, and irreducible over k(U)
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because −(U + 1)U2/(U − 1) has no square root in k(U). Thus f is irreducible
in k[U, V ] ∼= k[U, V,W ]/(W ); hence (W, f) is a prime ideal. In particular it is its
own radical. For any value of t, check that the product (U + t)(W, f) is equal to
the intersection (U + t)∩ (W, f). It follows that the ideal (U + t)(W, f) is radical:
Rad((U + t)(W, f)) = Rad(U + t)∩Rad(W, f) = (U + t)∩ (W, f) = (U + t)(W, f),
and thus the ring k(p)[U, V,W ]/(U+t) ·(W, f) contains no nilpotents and all fibers
are reduced.

(f) Here SpecZ[T ] = A1
Z; hence for any p ∈ SpecZ the fiber is Spec k(p)[T ] = A1

k(p),
which is both irreducible and reduced.

(g) By the same arguments as in (c) the ring B ⊗A k(p) ∼= k(p)[T ]/(T 2 + 1) is
∼= k(p)[U ]/(U2) if T 2 + 1 = 0 has a double solution in k(p),
∼= k(p)2 if T 2 + 1 = 0 has two distinct solutions in k(p),

a field if T 2 + 1 = 0 has no solution in k(p).

Here the first case occurs if p = (2), the second if p = (p) for a prime p ≡ 1 (4),
and the third for all other prime ideals (because F×

p has order p−1 and
√
−1 6∈ Q).

Accordingly, the fiber is irreducible but not reduced, respectively reduced but not
irreducible, respectively irreducible and reduced.

(h) The fiber over the generic point (0) has the coordinate ring C⊗Z Q ∼= C and
is therefore irreducible and reduced. For any prime p we have C ⊗Z Z/pZ = 0;
hence the fiber is empty and thus reduced, but not irreducible.

(i) For any p ∈ SpecA, we have k(p) = S−1(A/p) with S := (A/p) r {0}, and
hence

A/a⊗A k(p) ∼= S−1(A/a⊗A A/p) ∼= S−1A/(a + p).

In the case a ⊂ p this is simply k(p) again. Otherwise the image of S in A/(a+ p)
contains 0; hence the ring is zero.

3. Let k be a field. Consider X := A2
k = Spec k[X, Y ] and P1

k = Proj k[T, U ]. Let
X̃ denote the closed subscheme of X ×k P1

k defined by the equation XU = TY .
Determine the irreducible components and the fibers of X̃ and X̃ ×X X̃ over X.

Solution (sketch): Let O ∈ X denote the origin and set U := X r {O}. Then the
morphism π : X̃ → X induces an isomorphism π−1(U) → U . Thus for any point
x ∈ U , the fiber over x is Spec k(x). The fiber over O is a copy of the projective
line P1

k. Also X̃ is irreducible. For a detailed explanation as well as a proof of the
last statement, see for example Hartshorne, p. 28.

Since fiber product commutes with taking fibers, any fiber of X̃ ×X X̃ → X is the
product of two copies of the fiber of X̃ → X, which is therefore again Spec k(x),
respectively P1

k × P1
k. Also X̃ ×X X̃ is the union of the image of the diagonal

embedding of X̃ and the fiber P1
k × P1

k over O. Both of these are irreducible of
dimension 2, and none of them is contained in the other; hence these are the
irreducible components of X̃ ×X X̃.
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