Brownian Motion and Stochastic Calculus

Exercise sheet 1

Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than March 3rd

Exercise 1.1 Let W be a Brownian motion on [0, 1] and define the Brownian bridge $X = (X_t)_{0 \le t \le 1}$ by $X_t = W_t - tW_1$.

- (a) Show that X is a Gaussian process and calculate its mean and covariance functions. Sketch a typical path of X.
- (b) Show that X does **not** have independent increments.

Exercise 1.2 Let (Ω, \mathcal{F}, P) be a probability space and assume that $X = (X_t)_{t\geq 0}$, $Y = (Y_t)_{t\geq 0}$ are two stochastic processes on (Ω, \mathcal{F}, P) . Two processes Z and Z' on (Ω, \mathcal{F}, P) are said to be *modifications* of each other if $P(Z_t = Z'_t) = 1 \forall t \geq 0$, while Z and Z' are *indistinguishable* if $P(Z_t = Z'_t \forall t \geq 0) = 1$.

(a) Assume that X and Y are both right-continuous or both left-continuous. Show that the processes are modifications of each other if and only if they are indistinguishable.

Remark: A stochastic process is said to have the path property \mathcal{P} (\mathcal{P} can be continuity, right-continuity, differentiability, ...) if the property \mathcal{P} holds for *P*-almost every path.

(b) Give an example showing that one of the implications of part **a**) does not hold for general X, Y.

Exercise 1.3 Let $X = (X_t)_{t\geq 0}$ be a stochastic process defined on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$. The aim of this exercise is to show the following chain of implications:

X optional \Rightarrow X progressively measurable \Rightarrow X product-measurable and adapted.

- (a) Show that every progressively measurable process is product-measurable and adapted.
- (b) Assume that X is adapted and *every* path of X is right-continuous. Show that X is progressively measurable. *Remark:* The same conclusion holds true if every path of X is left-continuous. *Hint:* For fixed $t \ge 0$, consider an approximating sequence of processes Y^n on $\Omega \times [0, t]$ given by $Y_0^n = X_0$ and $Y_u^n = \sum_{k=0}^{2^n-1} 1_{(tk2^{-n}, t(k+1)2^{-n}]}(u) X_{t(k+1)2^{-n}}$ for $u \in (0, t]$.
- (c) Recall that the optional σ -field \mathcal{O} is generated by the class $\overline{\mathcal{M}}$ of all adapted processes whose paths are all RCLL. Show that \mathcal{O} is also generated by the subclass \mathcal{M} of all *bounded* processes in $\overline{\mathcal{M}}$.
- (d) Use the monotone class theorem to show that every optional process is progressively measurable.