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Exercise 10.1 Let (Bt)t≥0 be a Brownian motion and let (Xt)t≥0 be defined byXt =
∫ t

0 sign(Bs) dBs,
where sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0.

(a) Show that (Xt)t≥0 is a Brownian motion and that E[XtBs] = 0 for all s, t ≥ 0
(which means that X and B are uncorrelated).

(b) Show that E[XtB
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and conclude that (Xt)t≥0 and (Bt)t≥0 are not independent

(despite being uncorrelated and Gaussian processes).

Exercise 10.2 The goal of this exercise is to prove that “Brownian motion does not hit points
whenever d ≥ 2”. Let d ≥ 2, Ω = C([0,∞);Rd) and Y = (Yt)t≥0 denote the canonical process. For
each x ∈ Rd, let Px be the unique probability measure on (Ω,Y0

∞) under which Y is a (d-dimensional)
Brownian motion started at x.

(a) Let 0 6= x ∈ Rd and a > 0 such that 0 < a < |x| and consider the stopping time

τa,b := inf
{
t ≥ 0

∣∣ |Yt| ≤ a or |Yt| ≥ b
}
.

For d ≥ 3, show that (Xt)t≥0 defined by Xt :=
∣∣Yτa,b∧t

∣∣2−d is a bounded martingale under
Px. Additionally, when d = 2 show that Xt = ln(|Yτa,b∧t) is also a bounded martingale.

(b) Show that
for any 0 6= x ∈ Rd, we have Px

[
Yt 6= 0 for all t ≥ 0

]
= 1.

Exercise 10.3 Let B be a Brownian motion in R3, 0 6= x ∈ R3 and define the processM = (Mt)t≥0
by

Mt = 1
|x+Bt|

.

This is well defined since one can show that P [Bt = −x for some t ≥ 0] = 0.

(a) Show that M is a continuous local martingale.
Hint: Use Itô’s formula.

Moreover, show that M is bounded in L2, i.e., supt≥0 E[|Mt|2] <∞.
Hint: For any t ≥ 0, show that

E
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and estimate the right-hand side from above using the reverse triangle inequality.
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(b) Show that M is a strict local martingale, i.e., M is not a martingale.
Hint: Show that E[Mt]→ 0 as t→∞. To this end, similarly to part a), compute E[Mt] and
use the reverse triangle inequality as a first estimate. Then compute the resulting integral
using spherical coordinates.
Remark: This is the standard example of a local martingale which is not a (true) martingale.
It also shows that even good integrability properties like boundedness in L2 are not enough
to guarantee the martingale property.
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