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Exercise 10.1 Let (Bt)t≥0 be a Brownian motion and let (Xt)t≥0 be defined byXt =
∫ t

0 sign(Bs) dBs,
where sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0.

(a) Show that (Xt)t≥0 is a Brownian motion and that E[XtBs] = 0 for all s, t ≥ 0
(which means that X and B are uncorrelated).

(b) Show that E[XtB
2
t ] = 2 5

2 t
3
2 1

3
√
π
and conclude that (Xt)t≥0 and (Bt)t≥0 are not independent

(despite being uncorrelated and Gaussian processes).

Solution 10.1

(a) The function sign(·) is a bounded function and so the stochastic integral is well defined and a
continuous local martingale. Its quadratic variation is

〈X〉t =
∫ t

0
sign2(Bs) ds =

∫ t

0
ds = t,

and hence by Levy’s characterization theorem, we see that (Xt)t≥0 is a Brownian motion. For
the second part, by applying the Itô isometry, we obtain that:

E
[
XtBs

]
= E

[ ∫ s

0
dBu

∫ t

0
sign(Bu)dBu

]
= E

[ ∫ min(s,t)

0
sign(Bs) ds

]
.

By Fubini, we get that

E
[ ∫ min(s,t)

0
sign(Bs) ds

]
=
∫ min(s,t)

0
E
[
sign(Bs)

]
ds = 0.

Where the last equation follows from the symmetry of the Brownian motion, i.e.

E
[
sign(Bs)

]
= P

[
Bs ≥ 0

]
− P

[
Bs < 0

]
= 0.

(b) By Itô’s Formula, we know that B2
t = 2

∫ t
0 Bs dBs + t. Since E[Xt] = 0, we conclude using

Itô’s isometry and Fubini that

E
[
B2
tXt

]
= E

[(∫ t

0
sign(Bs) dBs

)(
2
∫ t

0
Bs dBs + t

)]
= 2E

[ ∫ t

0
sign(Bs)Bs ds

]
= 2

∫ t

0
E
[
|Bs|

]
ds.
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Finally, as Bs ∼ N(0, s), we obtain that E[|Bs|] =
√

2s√
π
. Therefore,

E
[
B2
tXt

]
=
∫ t

0

√
2s√
π
ds = 2 5

2 t
3
2

1
3
√
π
.

Therefore, as E[Xt] = 0, X and B cannot be independent.
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Exercise 10.2 The goal of this exercise is to prove that “Brownian motion does not hit points
whenever d ≥ 2”. Let d ≥ 2, Ω = C([0,∞);Rd) and Y = (Yt)t≥0 denote the canonical process. For
each x ∈ Rd, let Px be the unique probability measure on (Ω,Y0

∞) under which Y is a (d-dimensional)
Brownian motion started at x.

(a) Let 0 6= x ∈ Rd and a > 0 such that 0 < a < |x| and consider the stopping time

τa,b := inf
{
t ≥ 0

∣∣ |Yt| ≤ a or |Yt| ≥ b
}
.

For d ≥ 3, show that (Xt)t≥0 defined by Xt :=
∣∣Yτa,b∧t

∣∣2−d is a bounded martingale under
Px. Additionally, when d = 2 show that Xt = ln(|Yτa,b∧t) is also a bounded martingale.

(b) Show that
for any 0 6= x ∈ Rd, we have Px

[
Yt 6= 0 for all t ≥ 0

]
= 1.

Solution 10.2

(a) When g is a C2 function, one can define the radial function

f(x) := g(|x|)

Then, one has for every x 6= 0 that

∆f(x) = g′′(r) + d− 1
r

g′(r), with r = |x|.

Now, for d ≥ 3, consider g(x) := x2−d, which is C2 on (0,∞) and let f(x) := g(|x|). Then we
get for any x 6= 0, as g(r) = r2−d, that

∆f(x) = g′′(r) + d− 1
r

g′(r) = 0,

which means that f(x) = |x|2−d is harmonic in Rd \ {0}.
By applying Itô’s formula, as f is harmonic, we see that Px-a.s., for all t ≥ 0

Xt =
∣∣Yτa∧t

∣∣2−d = f(Yτa,b∧t) = f(x) +
∫ τa,b∧t

0
∇f(Ys) dYs,

which proves that (Xt)t≥0 is a local martingale. Moreover, as d ≥ 3, we have that

0 ≤ Xt =
∣∣Yτa,b∧t

∣∣2−d = 1
|Yτa,b∧t|d−2 ≤

1
ad−2 .

Thus, since it is uniformly bounded, we obtain that X is a true martingale.
For d ≥ 2, consider g(x) := ln(x) which is C2 on (0,∞) and let f(x) = g(|x|). Then, for any
x 6= 0

∆f(x) = 0

Thus by applying Itô’s formula

Xt = f(x) +
∫ τa,b∧t

0
∇f(Ys) dYs,

Thus, when x ∈ (−a, b), Xt is a local martingale bounded by max{| ln(a)|, | ln(b)|}. So it is a
true martingale.
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(b) We distinguish between the case d ≥ 3 and d = 2. Consider first the case d ≥ 3, where

Ex
[
|Yτa,b∧t|2−d] = |x|2−d, for all t ≥ 0.

Now, by applying the law of iterated logarithm for each component Y i, i = 1, .., d, we
conclude that τa,b is Px-a.s. finite. Thus, we obtain by letting t→∞ and applying dominated
convergence that

|x|2−d = lim
t→∞

Ex
[
|Yτa,b∧t|2−d] = Ex

[
|Yτa,b

|2−d] = a2−d Px
[
|Yτa,b

| = a
]

+ b2−d Px
[
|Yτa,b

| = b
]
.

Moreover, as Px
[
|Yτa,b

| = a
]

+ Px
[
|Yτa,b

| = b
]

= 1, we obtain for any 0 < a < |x| < b that

Px
[
|Yτa,b

| = a
]

= |x|
2−d − b2−d

a2−d − b2−d , Px
[
|Yτa,b

| = b
]

= a2−d − |x|2−d

a2−d − b2−d . (1)

Now, consider the stopping times

τ0 = inf
{
t ≥ 0

∣∣ |Yt| = 0
}

σb : = inf
{
t ≥ 0

∣∣ |Yt| ≥ b}.
Let (an)n∈N be a sequence decreasing to 0 such that an < |x| for all n. We deduce from (1),
as d ≥ 3, that for any fixed b > |x|,

Px[τ0 < σb
]

= Px
[⋂
n

{
τan

< σb}
]

= lim
n→∞

Px
[
τan

< σb
]

= lim
n→∞

Px
[
|Yτan,b

| = an
]

= 0. (2)

Let (bn)n∈N be a sequence which increases to infinity such that |x| < bn for all n. Applying
(2), we observe that

Px
[
Yt = 0 for some t ≥ 0

]
= Px

[⋃
n

{
τ0 < σbn

}
]

= lim
n→∞

Px
[
τ0 < σbn

]
= 0.

Next, we consider the case when d = 2. Using the same argument as in the case d ≥ 3, but
with respect to f(y) := log 1

|y| , yields that for any a < |x| < b

Px
[
|Yτa,b

| = a
]

=
log b
|x|

log b
a

, Px
[
|Yτa,b

| = b
]

=
log |x|a
log b

a

.

With the same arguments as in the case d ≥ 3, we obtain that

Px
[
Yt = 0 for some t ≥ 0

]
= 0.
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Exercise 10.3 Let B be a Brownian motion in R3, 0 6= x ∈ R3 and define the processM = (Mt)t≥0
by

Mt = 1
|x+Bt|

.

This is well defined since one can show that P [Bt = −x for some t ≥ 0] = 0.
(a) Show that M is a continuous local martingale.

Hint: Use Itô’s formula.

Moreover, show that M is bounded in L2, i.e., supt≥0 E[|Mt|2] <∞.
Hint: For any t ≥ 0, show that

E
[
|Mt|21{|Mt|≥ 2

|x|}

]
= (2πt)− 3

2

∫
|y|≤ |x|

2

1
|y|2

exp
(
−|y − x|

2

2t

)
dy

and estimate the right-hand side from above using the reverse triangle inequality.
(b) Show that M is a strict local martingale, i.e., M is not a martingale.

Hint: Show that E[Mt]→ 0 as t→∞. To this end, similarly to part a), compute E[Mt] and
use the reverse triangle inequality as a first estimate. Then compute the resulting integral
using spherical coordinates.
Remark: This is the standard example of a local martingale which is not a (true) martingale.
It also shows that even good integrability properties like boundedness in L2 are not enough
to guarantee the martingale property.

Solution 10.3
(a) Since the 3-dimensional Brownian motion B = (B1, B2, B3) takes values in the open set

D := Rd \ {−x} P -a.s., we can apply Itô’s formula to Mt = f(Bt) with f : D → (0,∞) given
by f(y) := 1

|x+y| .
For i = 1, 2, 3, we have

∂f

∂yi
(y) = − xi + yi

|x+ y|3
,

∂2f

(∂xi)2 (y) = −|x+ y|2 + 3(xi + yi)2

|x+ y|5
.

It follows that ∆f = ∂2f
(∂x1)2 + ∂2f

(∂x2)2 + ∂2f
(∂x3)2 = 0 on D. Hence, Itô’s formula yields

Mt = M0 +
∫ t

0
∇f(Bs) dBs + 1

2

∫ t

0
∆f(Bs) ds = 1

|x|
−

3∑
i=1

∫ t

0

xi +Bis
|x+Bs|3

dBis.

Thus, M is a continuous local martingale.
Let’s show the second part. For t > 0,

E

[
|Mt|2, |Mt| ≥

2
|x|

]
= (2πt)− 3

2

∫
|x+y|≤ |x|

2

1
|x+ y|2

exp
(
−|y|

2

2t

)
dy

= (2πt)− 3
2

∫
|y|≤ |x|

2

1
|y|2

exp
(
−|y − x|

2

2t

)
dy

≤ (2πt)− 3
2

∫
|y|≤ |x|

2

1
|y|2

exp
(
− (|x| − |y|)2

2t

)
dy

≤ (2πt)− 3
2 exp

(
−|x|

2

8t

) ∫
|y|≤ |x|

2

1
|y|2

dy.
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The integral term in the preceding expression is finite since the domain of integration is
3-dimensional. Moreover, the function t 7→ (2πt)− 3

2 exp
(
− |x|

2

8t

)
is continuous on (0,∞) and

converges to 0 as t → 0 and t → ∞, hence it is bounded on (0,∞). It follows that M is
bounded in L2.

(b) For t > 0, using spherical coordinates,

E[Mt] = (2πt)−3/2
∫
R3

1
|x+ y|

exp
(
−|y|

2

2t

)
dy

= (2πt)−3/2
∫
R3

1
|y|

exp
(
−|y − x|

2

2t

)
dy

≤ (2πt)−3/2
∫
R3

1
|y|

exp
(
− (|y| − |x|)2

2t

)
dy

= (2πt)−3/2
∫ ∞

0

∫ 2π

0

∫ π

0

1
r

exp
(
− (r − |x|)2

2t

)
r2 sin θ dθdϕdr

= 4π(2πt)−3/2
∫ ∞

0
r exp

(
− (r − |x|)2

2t

)
dr

= 4π(2πt)−3/2
∫ ∞
−|x|

(r + |x|) exp
(
−r

2

2t

)
dr

= 4π(2πt)−3/2

(∫ ∞
−|x|

r exp
(
−r

2

2t

)
dr + |x|

∫ ∞
−|x|

exp
(
−r

2

2t

)
dr

)

≤ 4π(2πt)−3/2

([
−t exp

(
−r

2

2t

)]∞
−|x|

+ |x|
√

2πt
)

= 4π(2πt)−3/2
(
t exp

(
−|x|

2

2t

)
+ |x|

√
2πt
)

= O
(
t−

1
2

)
(t→∞).

Hence, E[Mt]→ 0 as t→∞. Since E[M0] = 1
|x| > 0, M cannot be a martingale.
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