Brownian Motion and Stochastic Calculus

Exercise sheet 11

 $Please \ hand \ in \ your \ solutions \ during \ exercise \ class \ or \ in \ your \ assistant's \ box \ in \ HG \ E65 \ no \ latter \ than \\ May \ 12th$

Exercise 11.1 Show that for a uniformly integrable martingale M with right-continuous path.

$$\mathbb{P}\left(\sup_{t\geq 0}|M_t|\geq \epsilon\right)\leq \frac{1}{\epsilon}\mathbb{E}[|M_{\infty}|]$$

Solution 11.1 Define $\tau_{\epsilon} := \inf\{s \in \mathbb{R} : |M_s| > \epsilon\}$ and note that $|M_{\tau_{\epsilon}}| \ge \epsilon$, thus

$$\mathbb{E}\left[\mathbf{1}_{\{\sup_{t\geq 0}|M_{t}|\geq \epsilon\}}\right] \leq \frac{1}{\epsilon} \mathbb{E}\left[|M_{\tau_{\epsilon}}|\mathbf{1}_{\{\sup_{t\geq 0}|M_{t}|\geq \epsilon\}}\right]$$
$$= \frac{1}{\epsilon} \mathbb{E}\left[\liminf_{t}|M_{t\wedge\tau_{\epsilon}}|\mathbf{1}_{\{\sup_{t\geq 0}|M_{t}|\geq \epsilon\}}\right]$$
$$\leq \frac{1}{\epsilon}\liminf_{t}\mathbb{E}\left[|M_{t\wedge\tau_{\epsilon}}\right]$$
$$\stackrel{(2.3.8)}{\leq} \frac{1}{\epsilon}\liminf_{t}\mathbb{E}\left[|\mathbb{E}\left[M_{\infty} \mid \mathcal{F}_{\tau_{\epsilon}\wedge t}\right]|\right]$$
$$\leq \frac{1}{\epsilon}\mathbb{E}\left[|M_{\infty}|\right]$$

Exercise 11.2 Consider a probability space (Ω, \mathcal{F}, P) carrying a Brownian motion $W = (W_t)_{t \geq 0}$. Denote by $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ the *P*-augmentation of the (raw) filtration generated by *W*. Moreover, fix T > 0, a < b, and set $F := 1_{\{a \leq W_T \leq b\}}$. The goal of this exercise is to find explicitly the integrand $H \in L^2_{loc}(W)$ in the Itô representation

$$F = E[F] + \int_0^\infty H_s \, dW_s. \tag{(\star)}$$

(a) Show that the martingale $M = (M_t)_{t \geq 0}$ given by $M_t := E[F|\mathcal{F}_t]$ has the representation

 $M_t = g(W_t, t), \quad 0 \le t \le T,$

for a Borel function $g : \mathbb{R} \times [0, T) \to \mathbb{R}$. Compute g in terms of the distribution function Φ of the standard normal distribution.

- (b) Apply Itô's formula to g(W_t, t). Note that the process (W_t, t)_{t≥0} restricted to Ω × (0, T) takes values in the open set ℝ × (0, T).
 Hint: Since M is a martingale, you do not need to calculate all the terms in Itô's formula.
- (c) From **b**), deduce a candidate for H and show that it works for Itô's representation of F in (\star) .

Solution 11.2

(a) By the Markov property of Brownian motion, we have for any $0 \le t < T$,

$$M_t = E[1_{\{a \le W_T \le b\}} | \mathcal{F}_t] = K_{T-t}(W_t, [a, b])$$

where K is the Gaussian transition kernel. Define $g: \mathbb{R} \times [0,T) \to \mathbb{R}$ by

$$g(x,t) = K_{T-t}(x, [a, b]).$$

Then, denoting the standard normal distribution function by Φ , we have

$$g(x,t) = \Phi\left(\frac{b-x}{\sqrt{T-t}}\right) - \Phi\left(\frac{a-x}{\sqrt{T-t}}\right)$$

In particular, g is $C^{2,1}$ on $\mathbb{R} \times (0,T)$.

Alternative computation. Noting that W_t is \mathcal{F}_t -measurable and $W_T - W_t \sim \mathcal{N}(0, T - t)$ is independent of \mathcal{F}_t , we can compute

$$M_t = E[F|\mathcal{F}_t] = P[a \le W_T \le b|\mathcal{F}_t] = P[a - W_t \le W_T - W_t \le b - W_t|\mathcal{F}_t]$$
$$= \Phi\left(\frac{b - W_t}{\sqrt{T - t}}\right) - \Phi\left(\frac{a - W_t}{\sqrt{T - t}}\right) = g(W_t, t).$$

(b) Since $M_t = g(W_t, t)$ is a martingale, the sum of all finite variation terms in Itô's formula applied to $g(W_t, t)$ vanishes and we obtain for $t \in (0, T)$ that

$$M_t - M_0 = \int_0^t \frac{\partial g}{\partial x}(W_s, s) \, dW_s = \int_0^t \frac{1}{\sqrt{T-s}} \left(\varphi\left(\frac{a-W_s}{\sqrt{T-s}}\right) - \varphi\left(\frac{b-W_s}{\sqrt{T-s}}\right)\right) \, dW_s, \quad (1)$$

where $\varphi = \Phi'$ denotes the standard normal density.

(c) Since $x\varphi(x) \to 0$ as $x \to \pm \infty$, it is easy to see that the integrand in (1) converges *P*-a.s. to 0 as $s \uparrow T$. Hence,

$$H := \frac{1}{\sqrt{T-s}} \left(\varphi \left(\frac{a-W_s}{\sqrt{T-s}} \right) - \varphi \left(\frac{b-W_s}{\sqrt{T-s}} \right) \right) \mathbf{1}_{[\![0,T]\!]}$$

is a continuous, adapted process. Thus, $H \in L^2_{\mathrm{loc}}(W)$ and (\star) yields for $0 \leq t < T$ that

$$M_t = M_0 + \int_0^t H_s \, dW_s.$$
 (2)

Since both sides in (2) are local martingales on $[0, \infty)$ and hence continuous, we can let $t \uparrow T$ to get

$$M_T = M_0 + \int_0^T H_s \, dW_s.$$

To conclude, it suffices to note that $M_T = F$, $M_0 = E[F]$, and $\int_0^T H_s dW_s = \int_0^\infty H_s dW_s$ since H is zero on $[T, \infty]$. Moreover, $\int H dW$ is a martingale as M is one. **Exercise 11.3** The objective of this problem is to prove that Itô's representation theorem does not hold for filtrations that are not Brownian, i.e., we want to find two square integrable-martingales X, M such that under the filtration generated by M, X is a martingale but X cannot be represented as a stochastic integral with respect to M.

To do this take B_{\cdot} , W_{\cdot} 2 independent Brownian motion, and define $M_t := \int_0^t B_s dW_s$ and $X_t := B_t^2 - t$, and take $\mathcal{F}_t^M = \sigma(M_s : s \leq t) \vee \mathcal{N}$, for \mathcal{N} the family of *P*-nullsets.

- (a) Show that X_t is \mathcal{F}_t^M -measurable. Furthermore, M_{\cdot} , X_{\cdot} are martingales, such that $\mathbb{E}\left[M_t^2\right]$, $\mathbb{E}\left[X_t^2\right] < \infty$.
- (b) Show that it doesn't exist an adapted process H such that $\mathbb{E}\left[\int_0^t H_s^2 d\langle M \rangle_s\right] < \infty$, and a.s. $\int_0^t H_s dM_s = X_t.$ **Hint:** Compute $\mathbb{E}\left[\left(\int_0^t H_s dM_s - X_t\right)^2\right]$

Solution 11.3

(a) Note that there exists a deterministic sequence of partitions $(\Pi_n)_{n \in \mathbb{N}}$, such that a.s. $\langle M_t \rangle = \lim_{t_i \in \Pi_n} (M_{t_{i+1} \wedge t} - M_{t_i \wedge t})^2 = \int_0^t B_t^2 dt$, in consequence X_t is \mathcal{F}_t^M measurable. Additionally, $X_{t+h} - X_t$ is independent of \mathcal{F}_t^M , thus X_t is an \mathcal{F}_t^M -martingale. To finish, note that

$$\mathbb{E}\left[X_t^2\right] = \mathbb{E}\left[B_t^4\right] - 2t^2 \mathbb{E}\left[B_t^2\right] + t^4 < \infty$$
$$\mathbb{E}\left[M_t^2\right] = \int_0^t \int_0^t \mathbb{E}\left[B_s B_u\right] dx du < \infty.$$

(b) Thanks to Itô's formula a.s. $X_s = 2 \int_0^t B_s dB_s$. Additionally, a.s. $\int_0^t H_s dX_s = \int_0^t H_s B_s dW_s$. If a.s. $\int_0^t H_s dM_s = X_t$,

$$0 = \mathbb{E}\left[\left(\int_0^t H_s dM_s - X_t\right)^2\right] = \mathbb{E}\left[\int_0^t H_s B_s dW_s - 2\int_0^t B_s dB_s\right] = 4\mathbb{E}\left[\int_0^t B_s^2 dt\right] + \mathbb{E}\left[\int_0^t H_s^2 B_s^2 ds\right]$$

which is a contradiction.