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Exercise 12.1 The aim of this exercise is to show that

“If you run Brownian motion in two dimensions for a positive amount of time, it will
write your name [in cursive script, without dotted i’s or crossed t’s].”

Thinking of the function g : [0, 1]→ R2 with g(0) = (0, 0), as our signature, we can make a precise
statement. Take (Bt)t∈[0,1] a two-dimensional Brownian motion on [0, 1] and note that for any
[a, b] ⊂ [0, 1] the process

X
(a,b)
t =

√
b− a

(
Ba+ t

b−a
−Ba

)
is again a Brownian motion on [0, 1]. The Brownian motion spells your name (to precision ε > 0)
on the interval (a, b) if P-almost surely

sup
t∈[0,1]

|X(a,b)
t − g(t)| < ε.

We say that the Brownian motion writes your name if P-almost surely

sup
t∈[0,1]

∣∣∣∣X( 1
2n+1 ,

1
2n )

t − g(t)
∣∣∣∣ < ε, for infinitely many n.

(a) Argue why the result can be proved once we show that

P

(
sup
t∈[0,1]

|Bt − g(t)| < ε

)
> 0, ∀ε > 0. (1)

(b) Consider an individual who does not even make an X as signature, i.e. g(t) = (0, 0) for all
t ∈ [0, 1]. Show that

P

(
sup
t∈[0,1]

|Bt| < ε

)
> 0, ∀ε > 0.

(c) Complete the solution of the problem using b) and Girsanov theorem.

Exercise 12.2 Dirichlet Problem Let D be a bounded open set of Rd and f a continuous
function on ∂D. Suppose there exist a function g : D̄ 7→ R continuous in ∂D and of class C2 in D,
such that g = f in ∂D and ∆g = 0 in D. Let x ∈ D and (Bt)t≥0 a d-dimensional Brownian motion
starting from x. Define T := inf{t ≥ 0 : Bt /∈ D}. Show that

g(x) = E [f(Bt)]

and conclude that if such a g exists it is unique.
Hint: It may be useful to define Tε := inf{s ≤ t : dist(Bt, ∂D) ≤ ε}.

Exercise 12.3 Let W = (Wt)t≥0 be a Brownian motion defined on some filtered probability space
(Ω,F,F, P ) satisfying the usual conditions.
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(a) Consider the Ornstein-Uhlenbeck process

Xt = xe−λt + ν(1− e−λt) +
∫ t

0
σeλ(s−t)dWs, t ≥ 0 (2)

for an x ∈ R, where ν and λ, σ > 0 are real constants. Show that X satisfies the Ornstein-
Uhlenbeck SDE:

dXt = λ(ν −Xt)dt+ σdWt, X0 = x.

Hint: Apply Itô’s formula to f(x, t) = xeλt.

(b) Calculate the mean and variance functions of X:

T 7→ E[XT ], and T 7→ Var[XT ].

Exercise 12.4 Matlab Exercise Given a finite time horizon T = 1, the aim of this exercise is to
simulate the Ornstein-Uhlenbeck process and the Cox-Ingersoll-Ross process from (Ex 11-2) on the
time interval [0, T ] using the Euler-Maruyama scheme.1
To this end, let W be a dimensional Brownian motion. We define an equidistant decomposition
{0 = t0 < . . . < tn = T} of the interval [0, T ] by setting

ti := i

M
T, i = 0, . . . ,M = 103.

If X is a process on the interval [0, T ] satisfying the stochastic differential equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt

with initial condition X0 = x for an x ∈ R, and t0 = 0 < t1 < . . . < tM = T is a given discretization
of the time interval [0, T ], then an Euler-Maruyama approximation2 of X is given by the iterative
scheme: X0 = x and

Xti+1 = Xti + a(ti, Xti)(ti+1 − ti) + b(ti, Xti)(Wti+1 −Wti), i = 0, . . . ,M − 1.

(a) Simulate 10 sample paths of the OU-process X from Ex 11-2 a) with λ = 1, ν = 1.2, σ = 0.3
and X0 = 1.

(b) Use Monte-Carlo simulation (N = 105) to compute E[X1],E[X2
1 ],E[X+

1 ].

1This is the stochastic version of the Euler-scheme for ODEs.
2As a reference for the Euler-Maruyama approximation see for example Section 3.2 of Numerical Solution of SDE

Through Computer Experiments (Kloeden, Platen, Schurz).
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