Brownian Motion and Stochastic Calculus

Exercise sheet 13

Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than June 2nd

Exercise 13.1 Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion defined on a probability space (Ω, \mathcal{F}, P). Consider the SDE

$$
\begin{equation*}
X_{t}=\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}, \quad X_{0}=0 \tag{1}
\end{equation*}
$$

where $b(x):=3 x^{1 / 3}$ and $\sigma(x):=3 x^{2 / 3}$. Show that the SDE has uncountably many strong solutions of the form

$$
X_{t}^{(\Theta)}= \begin{cases}0, & 0 \leq t<\beta_{\Theta} \\ B_{t}^{3}, & \beta_{\Theta} \leq t<\infty\end{cases}
$$

where $0 \leq \Theta \leq \infty$ is any fixed constant and $\beta_{\Theta}:=\inf \left\{s \geq \Theta \mid B_{s}=0\right\}$.
Solution 13.1 We consider for any fixed $0 \leq \Theta \leq \infty$ the process $\left(S_{t}^{(\Theta)}\right)_{t \geq 0}$

$$
S_{t}^{(\Theta)}= \begin{cases}0, & 0 \leq t<\beta_{\Theta} \\ B_{t}, & \beta_{\Theta} \leq t<\infty\end{cases}
$$

where $\beta_{\Theta}:=\inf \left\{s \geq \Theta \mid B_{s}=0\right\}$. We observe that β_{Θ} is a stopping time (w.r.t. any filtration satisfying the usual conditions such that B is adapted to). As a consequence of Exercise 4-2, we obtain that for any semimartingale $\left(S_{t}\right)_{t \geq 0}$ and any stopping time τ the stopped process $\left(S_{t}^{\tau}\right)_{t \geq 0}$ is also a semimartingale. As obviously the difference of two semimartingales is again a semimartingale, we see, as $B_{\beta_{\Theta}}=0$, that

$$
S^{(\Theta)}=B-B^{\beta_{\Theta}}
$$

is a continuous semimartingale. Moreover, we have for any $t \geq 0$ that $X_{t}^{(\Theta)}=f\left(S_{t}^{(\Theta)}\right)$ for the C^{2} function $f(x):=x^{3}$. Thus, by applying Itô's formula, we get that

$$
\begin{aligned}
X_{t}^{(\Theta)} & =f\left(S_{t}^{(\Theta)}\right)=\left(S_{0}^{(\Theta)}\right)^{3}+\int_{0}^{t} 3\left(S_{s}^{(\Theta)}\right)^{2} d S_{s}^{(\Theta)}+3 \int_{0}^{t} S_{s}^{(\Theta)} d\left\langle S^{(\Theta)}\right\rangle_{s} \\
& =\int_{0}^{t} 3\left(X_{s}^{(\Theta)}\right)^{2 / 3} d S_{s}^{(\Theta)}+3 \int_{0}^{t}\left(X_{s}^{(\Theta)}\right)^{1 / 3} d\left\langle S^{(\Theta)}\right\rangle_{s} \\
& =\int_{0}^{t} 3\left(X_{s}^{(\Theta)}\right)^{2 / 3} \mathbf{1}_{s>\beta_{\Theta}} d B_{s}+3 \int_{0}^{t}\left(X_{s}^{(\Theta)}\right)^{1 / 3} \mathbf{1}_{s>\beta_{\Theta}} d s \\
& =\int_{0}^{t} 3\left(X_{s}^{(\Theta)}\right)^{2 / 3} d B_{s}+3 \int_{0}^{t}\left(X_{s}^{(\Theta)}\right)^{1 / 3} d s
\end{aligned}
$$

We conclude that $X^{(\Theta)}$ solves the SDE for each $0 \leq \Theta \leq \infty$.

Exercise 13.2 Recall that $C_{0}(\mathbb{R})$ denotes the space of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that vanish at infinity. We call $C_{0}^{2}(\mathbb{R})$ the space of twice continuously differentiable functions f on \mathbb{R} such that f, f^{\prime} and $f^{\prime \prime}$ all belong to $C_{0}(\mathbb{R})$. For $a, b: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz-continuous and bounded, we define the partial differential operator $\mathcal{A}: C_{0}^{2}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})$ by

$$
\mathcal{A} f(x)=a(x) \frac{\partial f}{\partial x}(x)+\frac{1}{2} b^{2}(x) \frac{\partial^{2} f}{\partial x^{2}}(x), \quad x \in \mathbb{R}
$$

The goal of this exercise is to link weak solutions of the SDE

$$
d X_{t}=a\left(X_{t}\right) d t+b\left(X_{t}\right) d W_{t}
$$

to solutions of the martingale problem for $\left(\mathcal{A}, C_{K}^{2}(\mathbb{R})\right)$, where $C_{K}^{2}(\mathbb{R})$ denotes the subspace of compactly supported functions in $C_{0}^{2}(\mathbb{R})$.
(a) Let X be a weak solution to (\diamond) with initial distribution $\delta_{\{x\}}$. Show that X is a solution to the martingale problem for $\left(\mathcal{A}, C_{K}^{2}(\mathbb{R})\right)$. In other words, show that if $(\Omega, \mathcal{F}, \mathbb{F}, Q, W, X)$ is a weak solution to (\diamond) with initial distribution $\delta_{\{x\}}$, then the process M^{f} defined by $M_{t}^{f}:=f\left(X_{t}\right)-\int_{0}^{t} \mathcal{A} f\left(X_{s}\right) d s, t \geq 0$, is a $\left(Q, \mathbb{F}^{X}\right)$-martingale for each $f \in C_{K}^{2}(\mathbb{R})$.
(b) Fix $x \in \mathbb{R}$ and let X, defined on some probability space (Ω, \mathcal{F}, P), be a continuous process which is a solution to the martingale problem for $\left(\mathcal{A}, C_{K}^{2}(\mathbb{R})\right)$ with $X_{0}=x$. Show that the process $M:=X-\int_{0}^{c} a\left(X_{s}\right) d s$ is a continuous local martingale with $\langle M\rangle=\int_{0}^{c} b^{2}\left(X_{s}\right) d s$.
Hint: For the first assertion, use the fact that X is a solution to the martingale problem for $\left(\mathcal{A}, C_{K}^{2}(\mathbb{R})\right)$ for a sequence of functions in $C_{K}^{2}(\mathbb{R})$ that approximates the identity on \mathbb{R}, and construct a compatible localising sequence $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ for M.
For the second assertion, first follow the same strategy for the function $y \mapsto y^{2}, y \in \mathbb{R}$. Then show that $M^{2}-\int_{0} b^{2}\left(X_{s}\right) d s$ is a continuous local martingale by expressing it as the sum of continuous local martingales.
(c) In the setting of b), assume that $b(x) \neq 0$ for all $x \in \mathbb{R}$ and construct from X a weak solution of (\diamond) with initial distribution $\delta_{\{x\}}$.
Hint: Consider $B:=\int_{0} \frac{1}{b\left(X_{s}\right)} d M_{s}$.

Solution 13.2

(a) Let $(\Omega, \mathcal{F}, \mathbb{F}, Q, W, X)$ be a weak solution of the SDE

$$
d X_{t}=a\left(X_{t}\right) d t+b\left(X_{t}\right) d W_{t}
$$

with initial distribution $\delta_{\{x\}}$. Fix $f \in C_{K}^{2}(\mathbb{R})$. By Itô's formula,

$$
M_{t}^{f}=f\left(X_{t}\right)-\int_{0}^{t} \mathcal{A} f\left(X_{s}\right) d s=f(x)+\int_{0}^{t}\left(b \frac{\partial f}{\partial x}\right)\left(X_{s}\right) d W_{s}
$$

Note that the function $b \frac{\partial f}{\partial x}$ is continuous and compactly supported. Hence, the integrand $\left(b \frac{\partial f}{\partial x}\right)\left(X_{s}\right)$ is uniformly bounded. Thus, for any $T>0$, we obtain that

$$
E\left[\left\langle\int\left(b \frac{\partial f}{\partial x}\right)\left(X_{s}\right) d W_{s}\right\rangle_{T}^{1 / 2}\right] \leq C T^{1 / 2}
$$

for some constant $C>0$. Thus, by the Burkholder-Davis-Gundy inequality, we conclude that $\sup _{0 \leq t \leq T}\left|\int_{0}^{t}\left(b \frac{\partial f}{\partial x}\right)\left(X_{s}\right) d W_{s}\right|$ is integrable (alternatively, one could have used also Lemma 4.1.18 in the script). We conclude that for any $T>0$, the stopped process $\left(\int\left(b \frac{\partial f}{\partial x}\right)\left(X_{s}\right) d W_{s}\right)^{T}$ is a martingale and thus $\int\left(b \frac{\partial f}{\partial x}\right)\left(X_{s}\right) d W_{s}$ is a martingale.
(b) Fix $n \in \mathbb{N}$ and let $\tau_{n}:=\left\{t \geq 0:\left|X_{t}-x\right| \geq n\right\}$ and $f_{n} \in C_{K}^{2}(\mathbb{R})$ such that $f_{n}(y)=y$ for $y \in[x-2 n, x+2 n]$. Since X is a continuous solution to the martingale problem for $\left(\mathcal{A}, C_{K}^{2}(\mathbb{R})\right)$,

$$
M_{t}^{f_{n}}:=f_{n}\left(X_{t}\right)-\int_{0}^{t} \mathcal{A} f_{n}\left(X_{s}\right) d s
$$

is a martingale. Note that $f_{n}(y)=y$ and $\mathcal{A} f_{n}(y)=a(y)$ for $y \in[x-n, x+n]$, and X only takes values in $[x-n, x+n\rfloor$ on $\llbracket 0, \tau_{n} \rrbracket$ by construction. Hence, also

$$
\left(M^{f_{n}}\right)_{t}^{\tau_{n}}=f_{n}\left(X_{t}^{\tau_{n}}\right)-\int_{0}^{t \wedge \tau_{n}} \mathcal{A} f_{n}\left(X_{s}\right) d s=X_{t}^{\tau_{n}}-\int_{0}^{t \wedge \tau_{n}} a\left(X_{s}\right) d s=M_{t}^{\tau_{n}}
$$

is a martingale. Since $\tau_{n} \uparrow \infty P$-a.s., we conclude that M is a continuous local martingale.
Choosing $g_{n} \in C_{K}^{2}(\mathbb{R})$ such that $g_{n}(y)=y^{2}$ for $y \in[x-2 n, x+2 n]$ and using the same technique as above, we obtain that

$$
H_{t}:=\left(X_{t}\right)^{2}-\int_{0}^{t}\left(2 a\left(X_{s}\right) X_{s}+b^{2}\left(X_{s}\right)\right) d s
$$

is a continuous local martingale. Setting $A_{t}:=\int_{0}^{t} a\left(X_{s}\right) d s$ and using integration by parts in the fourth equality,

$$
\begin{aligned}
\left(M_{t}\right)^{2}-\int_{0}^{t} b^{2}\left(X_{s}\right) d s & =\left(X_{t}-A_{t}\right)^{2}-\int_{0}^{t} b^{2}\left(X_{s}\right) d s-\left(\left(X_{t}\right)^{2}-\int_{0}^{t}\left(2 a\left(X_{s}\right) X_{s}+b^{2}\left(X_{s}\right)\right) d s\right)+H_{t} \\
& =-2 X_{t} A_{t}+A_{t}^{2}+2 \int_{0}^{t} a\left(X_{s}\right) X_{s} d s+H_{t} \\
& =2\left(-X_{t} A_{t}+\int_{0}^{t} A_{s} d A_{s}+\int_{0}^{t} X_{s} d A_{s}\right)+H_{t} \\
& =2\left(\int_{0}^{t} A_{s} d A_{s}-\int_{0}^{t} A_{s} d X_{s}\right)+H_{t} \\
& =-2 \int_{0}^{t} A_{s} d M_{s}+H_{t}
\end{aligned}
$$

is a continuous local martingale. Hence, $\langle M\rangle=\int_{0}^{2} b^{2}\left(X_{s}\right) d s$.
(c) With M defined as in part b), let

$$
B_{t}:=\int_{0}^{t} \frac{1}{b\left(X_{s}\right)} d M_{s}, \quad t \geq 0
$$

Then

$$
\int_{0}^{t} b\left(X_{s}\right) d B_{s}=M_{t}-M_{0}=X_{t}-X_{0}-\int_{0}^{t} a\left(X_{s}\right) d s
$$

It only remains to show that B is a Brownian motion under P. Indeed, $B \in \mathcal{M}_{0, \text { loc }}^{c}(P)$ since $M \in \mathcal{M}_{0, \text { loc }}^{c}(P)$ by part b), so by Lévy's characterization theorem it suffices to note that

$$
\langle B\rangle_{t}=\int_{0}^{t} \frac{1}{b^{2}\left(X_{s}\right)} d\langle M\rangle_{s} \stackrel{\mathrm{~b})}{=} \int_{0}^{t} \frac{1}{b^{2}\left(X_{s}\right)} b^{2}\left(X_{s}\right) d s=t
$$

Exercise 13.3 Linear SDEs

Let $\left(B_{t}\right)_{t \in[0, T]}$ be a Brownian motion in $[0, T]$ and $a_{1}, a_{2}, b_{1}, b_{2}$ deterministic functions of time. The general form of a scalar linear stochastic differential equation is

$$
\begin{equation*}
d X_{t}=\left(a_{1}(t) X_{t}+a_{2}(t)\right) d t+\left(b_{1}(t) X_{t}+b_{2}(t)\right) d B_{t} \tag{2}
\end{equation*}
$$

If the coefficients are measurable and bounded on $[0, T]$, we can apply Theorem (10.14) to get existence and uniqueness of a strong solution $\left(X_{t}\right)_{t \in[0, T]}$ for each initial condition x.
(a) When $a_{2}(t) \equiv 0$ and $b_{2}(t) \equiv 0,(2)$ reduces to the homogeneous linear SDE

$$
\begin{equation*}
d X_{t}=a_{1}(t) X_{t} d t+b_{1}(t) X_{t} d B_{t} \tag{3}
\end{equation*}
$$

Show that the solution of (3) with initial data $x=1$ is given by

$$
X_{t}=\exp \left(\int_{0}^{t}\left(a_{1}(s)-\frac{1}{2} b_{1}^{2}(s)\right) d s+\int_{0}^{t} b_{1}(s) d B_{s}\right)
$$

Remark: We can write (3) as

$$
d X_{t}=X_{t} d Y_{t}, \quad \text { where } \quad d Y_{t}=a_{1}(t) d t+b_{1}(t) d B_{t}
$$

Analogously as in the martingale case, $\left(X_{t}\right)_{t \geq 0}$ is called stochastic exponential of $(Y)_{t \geq 0}$ and is denoted by $\mathcal{E}(Y)_{t}$.
(b) Find a solution of the $\operatorname{SDE}(2)$ with initial condition $X_{0}=x$.

Hint: Look for a solution of the form

$$
X_{t}=U_{t} V_{t}
$$

where

$$
d U_{t}=a_{1}(t) U_{t} d t+b_{1}(t) U_{t} d B_{t}, \quad U_{0}=1
$$

and

$$
d V_{t}=\alpha(t) d t+\beta(t) d B_{t}, \quad V_{0}=x
$$

with $\alpha(t)$ and $\beta(t)$ coefficients to be determined.
(c) Solve the Langevin's SDE

$$
d X_{t}=a(t) X_{t} d t+d B_{t}, \quad X_{0}=x
$$

Solution 13.3

(a) Write $X_{t}=e^{V_{t}}$ with $V_{t}=\int_{0}^{t}\left(a_{1}(s)-\frac{1}{2} b_{1}^{2}(s)\right) d s+\int_{0}^{t} b_{1}(s) d B_{s}$. Then

$$
d X_{t}=e^{V_{t}} d V_{t}+\frac{1}{2} e^{V_{t}} d\langle V\rangle_{t}
$$

Plug the expression for V_{t} :

$$
\begin{aligned}
d X_{t} & =e^{V_{t}}\left(\left(a_{1}(t)-\frac{1}{2} b_{1}^{2}(t)\right) d t+b_{1}(t) d B_{t}\right)+\frac{1}{2} e^{V_{t}} b_{1}^{2}(t) d t \\
& =X_{t}\left(\left(a_{1}(t)+b_{1}(t) d B_{t}\right)\right.
\end{aligned}
$$

(b) Let us start as in the hint. The process $\left(U_{t}\right)_{t \geq 0}$ is the solution of an homogeneous linear SDE and, using a) we know that it is given in explicit form by

$$
U_{t}=\exp \left(\int_{0}^{t}\left(a_{1}(s)-\frac{1}{2} b_{1}^{2}(s)\right) d s+\int_{0}^{t} b_{1}(s) d B_{s}\right)
$$

Now we want to find the coefficients $a_{2}(t)$ and $b_{2}(t)$ such that $X_{t}=U_{t} V_{t}$. Applying product formula

$$
\beta(t) U_{t}=b_{2}(t), \text { and } \alpha(t) U_{t}=\alpha(t)-b_{1}(t) b_{2}(t)
$$

To sum up

$$
X_{t}=U_{t}\left(x+\int_{0}^{t} \frac{a_{2}(s)-b_{1}(s) b_{2}(s)}{U_{s}} d s+\int_{0}^{t} \frac{b_{2}(s)}{U_{s}} d B_{s}\right)
$$

(c) Applying point b) with $U_{t}=\exp \left(\int_{0}^{t} a(s) d s\right)$ we find

$$
X_{t}=\exp \left(\int_{0}^{t} a(s) d s\right)\left(X_{0}+\int_{0}^{t} \exp \left(-\int_{0}^{u} a(s) d s\right) d B_{u}\right)
$$

