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Exercise 13.1 Let (Bt)t≥0 be a Brownian motion defined on a probability space (Ω,F, P ). Consider
the SDE

Xt =
∫ t

0
b(Xs) ds+

∫ t

0
σ(Xs) dBs, X0 = 0 (1)

where b(x) := 3x1/3 and σ(x) := 3x2/3. Show that the SDE has uncountably many strong solutions
of the form

X
(Θ)
t =

{
0, 0 ≤ t < βΘ,
B3
t , βΘ ≤ t <∞,

where 0 ≤ Θ ≤ ∞ is any fixed constant and βΘ := inf
{
s ≥ Θ

∣∣Bs = 0
}
.

Solution 13.1 We consider for any fixed 0 ≤ Θ ≤ ∞ the process (S(Θ)
t )t≥0

S
(Θ)
t =

{
0, 0 ≤ t < βΘ,
Bt, βΘ ≤ t <∞

where βΘ := inf
{
s ≥ Θ

∣∣Bs = 0
}
. We observe that βΘ is a stopping time (w.r.t. any filtration

satisfying the usual conditions such that B is adapted to). As a consequence of Exercise 4-2, we
obtain that for any semimartingale (St)t≥0 and any stopping time τ the stopped process (Sτt )t≥0 is
also a semimartingale. As obviously the difference of two semimartingales is again a semimartingale,
we see, as BβΘ = 0, that

S(Θ) = B −BβΘ

is a continuous semimartingale. Moreover, we have for any t ≥ 0 that X(Θ)
t = f(S(Θ)

t ) for the C2

function f(x) := x3. Thus, by applying Itô’s formula, we get that

X
(Θ)
t = f

(
S

(Θ)
t

)
=
(
S

(Θ)
0

)3
+
∫ t

0
3
(
S(Θ)
s

)2
dS(Θ)

s + 3
∫ t

0
S(Θ)
s d〈S(Θ)〉s

=
∫ t

0
3
(
X(Θ)
s

)2/3
dS(Θ)

s + 3
∫ t

0

(
X(Θ)
s

)1/3
d
〈
S(Θ)〉

s

=
∫ t

0
3
(
X(Θ)
s

)2/3
1s>βΘ dBs + 3

∫ t

0

(
X(Θ)
s

)1/3
1s>βΘ ds

=
∫ t

0
3
(
X(Θ)
s

)2/3
dBs + 3

∫ t

0

(
X(Θ)
s

)1/3
ds

We conclude that X(Θ) solves the SDE for each 0 ≤ Θ ≤ ∞.
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Exercise 13.2 Recall that C0(R) denotes the space of continuous functions f : R→ R that vanish
at infinity. We call C2

0 (R) the space of twice continuously differentiable functions f on R such that
f, f ′ and f ′′ all belong to C0(R). For a, b : R→ R Lipschitz-continuous and bounded, we define the
partial differential operator A : C2

0 (R)→ C0(R) by

Af(x) = a(x)∂f
∂x

(x) + 1
2b

2(x)∂
2f

∂x2 (x), x ∈ R.

The goal of this exercise is to link weak solutions of the SDE

dXt = a(Xt) dt+ b(Xt) dWt (�)

to solutions of the martingale problem for (A, C2
K(R)), where C2

K(R) denotes the subspace of
compactly supported functions in C2

0 (R).

(a) Let X be a weak solution to (�) with initial distribution δ{x}. Show that X is a solution
to the martingale problem for (A, C2

K(R)). In other words, show that if (Ω,F,F, Q,W,X)
is a weak solution to (�) with initial distribution δ{x}, then the process Mf defined by
Mf
t := f(Xt)−

∫ t
0 Af(Xs) ds, t ≥ 0, is a (Q,FX)-martingale for each f ∈ C2

K(R).

(b) Fix x ∈ R and let X, defined on some probability space (Ω,F, P ), be a continuous process
which is a solution to the martingale problem for (A, C2

K(R)) with X0 = x. Show that the
process M := X −

∫ ·
0 a(Xs) ds is a continuous local martingale with 〈M〉 =

∫ ·
0 b

2(Xs) ds.
Hint: For the first assertion, use the fact that X is a solution to the martingale problem for
(A, C2

K(R)) for a sequence of functions in C2
K(R) that approximates the identity on R, and

construct a compatible localising sequence (τn)n∈N for M .
For the second assertion, first follow the same strategy for the function y 7→ y2, y ∈ R. Then
show that M2 −

∫ ·
0 b

2(Xs) ds is a continuous local martingale by expressing it as the sum of
continuous local martingales.

(c) In the setting of b), assume that b(x) 6= 0 for all x ∈ R and construct from X a weak solution
of (�) with initial distribution δ{x}.
Hint: Consider B :=

∫ ·
0

1
b(Xs) dMs.

Solution 13.2

(a) Let (Ω,F,F, Q,W,X) be a weak solution of the SDE

dXt = a(Xt) dt+ b(Xt) dWt

with initial distribution δ{x}. Fix f ∈ C2
K(R). By Itô’s formula,

Mf
t = f(Xt)−

∫ t

0
Af(Xs) ds = f(x) +

∫ t

0

(
b
∂f

∂x

)
(Xs) dWs.

Note that the function b∂f∂x is continuous and compactly supported. Hence, the integrand(
b∂f∂x

)
(Xs) is uniformly bounded. Thus, for any T > 0, we obtain that

E

[〈∫ (
b
∂f

∂x

)
(Xs) dWs

〉1/2

T

]
≤ CT 1/2

for some constant C > 0. Thus, by the Burkholder-Davis-Gundy inequality, we conclude
that sup0≤t≤T

∣∣∣ ∫ t0 (b∂f∂x) (Xs) dWs

∣∣∣ is integrable (alternatively, one could have used also
Lemma 4.1.18 in the script). We conclude that for any T > 0, the stopped process( ∫ (

b∂f∂x

)
(Xs) dWs

)T
is a martingale and thus

∫ (
b∂f∂x

)
(Xs) dWs is a martingale.

Updated: May 23, 2017 2 / 5



Brownian Motion and Stochastic Calculus, Spring 2017
D-MATH Exercise sheet 13

(b) Fix n ∈ N and let τn := {t ≥ 0 : |Xt − x| ≥ n} and fn ∈ C2
K(R) such that fn(y) = y

for y ∈ [x − 2n, x + 2n]. Since X is a continuous solution to the martingale problem for
(A, C2

K(R)),

Mfn

t := fn(Xt)−
∫ t

0
Afn(Xs) ds

is a martingale. Note that fn(y) = y and Afn(y) = a(y) for y ∈ [x− n, x+ n], and X only
takes values in [x− n, x+ n] on [[0, τn]] by construction. Hence, also

(Mfn)τn
t = fn(Xτn

t )−
∫ t∧τn

0
Afn(Xs) ds = Xτn

t −
∫ t∧τn

0
a(Xs) ds = Mτn

t

is a martingale. Since τn ↑ ∞ P -a.s., we conclude that M is a continuous local martingale.
Choosing gn ∈ C2

K(R) such that gn(y) = y2 for y ∈ [x − 2n, x + 2n] and using the same
technique as above, we obtain that

Ht := (Xt)2 −
∫ t

0

(
2a(Xs)Xs + b2(Xs)

)
ds

is a continuous local martingale. Setting At :=
∫ t

0 a(Xs) ds and using integration by parts in
the fourth equality,

(Mt)2 −
∫ t

0
b2(Xs) ds = (Xt −At)2 −

∫ t

0
b2(Xs) ds−

(
(Xt)2 −

∫ t

0

(
2a(Xs)Xs + b2(Xs)

)
ds

)
+Ht

= −2XtAt +A2
t + 2

∫ t

0
a(Xs)Xs ds+Ht

= 2
(
−XtAt +

∫ t

0
As dAs +

∫ t

0
Xs dAs

)
+Ht

= 2
(∫ t

0
As dAs −

∫ t

0
As dXs

)
+Ht

= −2
∫ t

0
As dMs +Ht

is a continuous local martingale. Hence, 〈M〉 =
∫ ·

0 b
2(Xs) ds.

(c) With M defined as in part b), let

Bt :=
∫ t

0

1
b(Xs)

dMs, t ≥ 0.

Then ∫ t

0
b(Xs) dBs = Mt −M0 = Xt −X0 −

∫ t

0
a(Xs) ds.

It only remains to show that B is a Brownian motion under P . Indeed, B ∈Mc
0,loc(P ) since

M ∈Mc
0,loc(P ) by part b), so by Lévy’s characterization theorem it suffices to note that

〈B〉t =
∫ t

0

1
b2(Xs)

d〈M〉s
b)=
∫ t

0

1
b2(Xs)

b2(Xs) ds = t.
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Exercise 13.3 Linear SDEs

Let (Bt)t∈[0,T ] be a Brownian motion in [0, T ] and a1, a2, b1, b2 deterministic functions of time.
The general form of a scalar linear stochastic differential equation is

dXt = (a1(t)Xt + a2(t)) dt+ (b1(t)Xt + b2(t)) dBt. (2)

If the coefficients are measurable and bounded on [0, T ], we can apply Theorem (10.14) to get
existence and uniqueness of a strong solution (Xt)t∈[0,T ] for each initial condition x.

(a) When a2(t) ≡ 0 and b2(t) ≡ 0, (2) reduces to the homogeneous linear SDE

dXt = a1(t)Xtdt+ b1(t)XtdBt. (3)

Show that the solution of (3) with initial data x = 1 is given by

Xt = exp
(∫ t

0
(a1(s)− 1

2b
2
1(s))ds+

∫ t

0
b1(s)dBs

)
.

Remark: We can write (3) as

dXt = XtdYt, where dYt = a1(t)dt+ b1(t)dBt.

Analogously as in the martingale case, (Xt)t≥0 is called stochastic exponential of (Y )t≥0 and
is denoted by E(Y )t.

(b) Find a solution of the SDE (2) with initial condition X0 = x.

Hint: Look for a solution of the form

Xt = UtVt,

where
dUt = a1(t)Utdt+ b1(t)UtdBt, U0 = 1

and
dVt = α(t)dt+ β(t)dBt, V0 = x,

with α(t) and β(t) coefficients to be determined.

(c) Solve the Langevin’s SDE

dXt = a(t)Xtdt+ dBt, X0 = x.

Solution 13.3

(a) Write Xt = eVt with Vt =
∫ t

0 (a1(s)− 1
2b

2
1(s))ds+

∫ t
0 b1(s)dBs. Then

dXt = eVtdVt + 1
2e

Vtd〈V 〉t.

Plug the expression for Vt :

dXt = eVt

(
(a1(t)− 1

2b
2
1(t))dt+ b1(t)dBt

)
+ 1

2e
Vtb21(t)dt

= Xt ((a1(t) + b1(t)dBt) .
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(b) Let us start as in the hint. The process (Ut)t≥0 is the solution of an homogeneous linear SDE
and, using a) we know that it is given in explicit form by

Ut = exp
(∫ t

0
(a1(s)− 1

2b
2
1(s))ds+

∫ t

0
b1(s)dBs

)
.

Now we want to find the coefficients a2(t) and b2(t) such that Xt = UtVt. Applying product
formula

β(t)Ut = b2(t), and α(t)Ut = α(t)− b1(t)b2(t).

To sum up

Xt = Ut

(
x+

∫ t

0

a2(s)− b1(s)b2(s)
Us

ds+
∫ t

0

b2(s)
Us

dBs

)
.

(c) Applying point b) with Ut = exp
(∫ t

0 a(s)ds
)
we find

Xt = exp
(∫ t

0
a(s)ds

)(
X0 +

∫ t

0
exp

(
−
∫ u

0
a(s)ds

)
dBu

)
.
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