Brownian Motion and Stochastic Calculus

Exercise sheet 13

 $Please \ hand \ in \ your \ solutions \ during \ exercise \ class \ or \ in \ your \ assistant's \ box \ in \ HG \ E65 \ no \ latter \ than \\ June \ 2nd$

Exercise 13.1 Let $(B_t)_{t\geq 0}$ be a Brownian motion defined on a probability space (Ω, \mathcal{F}, P) . Consider the SDE

$$X_t = \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dB_s, \quad X_0 = 0 \tag{1}$$

where $b(x) := 3x^{1/3}$ and $\sigma(x) := 3x^{2/3}$. Show that the SDE has uncountably many strong solutions of the form

$$X_t^{(\Theta)} = \begin{cases} 0, & 0 \le t < \beta_{\Theta}, \\ B_t^3, & \beta_{\Theta} \le t < \infty, \end{cases}$$

where $0 \le \Theta \le \infty$ is any fixed constant and $\beta_{\Theta} := \inf \{s \ge \Theta \mid B_s = 0\}.$

Solution 13.1 We consider for any fixed $0 \le \Theta \le \infty$ the process $(S_t^{(\Theta)})_{t\ge 0}$

$$S_t^{(\Theta)} = \begin{cases} 0, & 0 \le t < \beta_{\Theta}, \\ B_t, & \beta_{\Theta} \le t < \infty \end{cases}$$

where $\beta_{\Theta} := \inf \{ s \ge \Theta \mid B_s = 0 \}$. We observe that β_{Θ} is a stopping time (w.r.t. any filtration satisfying the usual conditions such that B is adapted to). As a consequence of Exercise 4-2, we obtain that for any semimartingale $(S_t)_{t\ge 0}$ and any stopping time τ the stopped process $(S_t^{\tau})_{t\ge 0}$ is also a semimartingale. As obviously the difference of two semimartingales is again a semimartingale, we see, as $B_{\beta_{\Theta}} = 0$, that

$$S^{(\Theta)} = B - B^{\beta_{\Theta}}$$

is a continuous semimartingale. Moreover, we have for any $t \ge 0$ that $X_t^{(\Theta)} = f(S_t^{(\Theta)})$ for the C^2 function $f(x) := x^3$. Thus, by applying Itô's formula, we get that

$$\begin{split} X_{t}^{(\Theta)} &= f\left(S_{t}^{(\Theta)}\right) = \left(S_{0}^{(\Theta)}\right)^{3} + \int_{0}^{t} 3\left(S_{s}^{(\Theta)}\right)^{2} dS_{s}^{(\Theta)} + 3\int_{0}^{t} S_{s}^{(\Theta)} d\langle S^{(\Theta)} \rangle_{s} \\ &= \int_{0}^{t} 3\left(X_{s}^{(\Theta)}\right)^{2/3} dS_{s}^{(\Theta)} + 3\int_{0}^{t} \left(X_{s}^{(\Theta)}\right)^{1/3} d\langle S^{(\Theta)} \rangle_{s} \\ &= \int_{0}^{t} 3\left(X_{s}^{(\Theta)}\right)^{2/3} \mathbf{1}_{s > \beta_{\Theta}} dB_{s} + 3\int_{0}^{t} \left(X_{s}^{(\Theta)}\right)^{1/3} \mathbf{1}_{s > \beta_{\Theta}} ds \\ &= \int_{0}^{t} 3\left(X_{s}^{(\Theta)}\right)^{2/3} dB_{s} + 3\int_{0}^{t} \left(X_{s}^{(\Theta)}\right)^{1/3} ds \end{split}$$

We conclude that $X^{(\Theta)}$ solves the SDE for each $0 \leq \Theta \leq \infty$.

Updated: May 23, 2017

Exercise 13.2 Recall that $C_0(\mathbb{R})$ denotes the space of continuous functions $f : \mathbb{R} \to \mathbb{R}$ that vanish at infinity. We call $C_0^2(\mathbb{R})$ the space of twice continuously differentiable functions f on \mathbb{R} such that f, f' and f'' all belong to $C_0(\mathbb{R})$. For $a, b : \mathbb{R} \to \mathbb{R}$ Lipschitz-continuous and bounded, we define the partial differential operator $\mathcal{A} : C_0^2(\mathbb{R}) \to C_0(\mathbb{R})$ by

$$\mathcal{A}f(x) = a(x)\frac{\partial f}{\partial x}(x) + \frac{1}{2}b^2(x)\frac{\partial^2 f}{\partial x^2}(x), \quad x \in \mathbb{R}.$$

The goal of this exercise is to link weak solutions of the SDE

$$dX_t = a(X_t) dt + b(X_t) dW_t \tag{(\diamond)}$$

to solutions of the martingale problem for $(\mathcal{A}, C_K^2(\mathbb{R}))$, where $C_K^2(\mathbb{R})$ denotes the subspace of compactly supported functions in $C_0^2(\mathbb{R})$.

- (a) Let X be a weak solution to (\diamond) with initial distribution $\delta_{\{x\}}$. Show that X is a solution to the martingale problem for $(\mathcal{A}, C_K^2(\mathbb{R}))$. In other words, show that if $(\Omega, \mathcal{F}, \mathbb{F}, Q, W, X)$ is a weak solution to (\diamond) with initial distribution $\delta_{\{x\}}$, then the process M^f defined by $M_t^f := f(X_t) - \int_0^t \mathcal{A}f(X_s) \, ds, \, t \geq 0$, is a (Q, \mathbb{F}^X) -martingale for each $f \in C_K^2(\mathbb{R})$.
- (b) Fix $x \in \mathbb{R}$ and let X, defined on some probability space (Ω, \mathcal{F}, P) , be a continuous process which is a solution to the martingale problem for $(\mathcal{A}, C_K^2(\mathbb{R}))$ with $X_0 = x$. Show that the process $M := X - \int_0^{\cdot} a(X_s) ds$ is a continuous local martingale with $\langle M \rangle = \int_0^{\cdot} b^2(X_s) ds$. **Hint:** For the first assertion, use the fact that X is a solution to the martingale problem for $(\mathcal{A}, C_K^2(\mathbb{R}))$ for a sequence of functions in $C_K^2(\mathbb{R})$ that approximates the identity on \mathbb{R} , and construct a compatible localising sequence $(\tau_n)_{n \in \mathbb{N}}$ for M. For the second assertion, first follow the same strategy for the function $y \mapsto y^2, y \in \mathbb{R}$. Then show that $M^2 - \int_0^{\cdot} b^2(X_s) ds$ is a continuous local martingale by expressing it as the sum of

show that $M^2 - \int_0^{\cdot} b^2(X_s) ds$ is a continuous local martingale by expressing it as the sum of continuous local martingales.

(c) In the setting of b), assume that b(x) ≠ 0 for all x ∈ ℝ and construct from X a weak solution of (◊) with initial distribution δ_{x}.
Hint: Consider B := ∫₀⁻ 1/b(X_s) dM_s.

Solution 13.2

(a) Let $(\Omega, \mathcal{F}, \mathbb{F}, Q, W, X)$ be a weak solution of the SDE

$$dX_t = a(X_t) dt + b(X_t) dW_t$$

with initial distribution $\delta_{\{x\}}$. Fix $f \in C^2_K(\mathbb{R})$. By Itô's formula,

$$M_t^f = f(X_t) - \int_0^t \mathcal{A}f(X_s) \, ds = f(x) + \int_0^t \left(b\frac{\partial f}{\partial x}\right)(X_s) \, dW_s.$$

Note that the function $b\frac{\partial f}{\partial x}$ is continuous and compactly supported. Hence, the integrand $\left(b\frac{\partial f}{\partial x}\right)(X_s)$ is uniformly bounded. Thus, for any T > 0, we obtain that

$$E\left[\left\langle \int \left(b\frac{\partial f}{\partial x}\right)(X_s) \, dW_s\right\rangle_T^{1/2}\right] \le CT^{1/2}$$

for some constant C > 0. Thus, by the Burkholder-Davis-Gundy inequality, we conclude that $\sup_{0 \le t \le T} \left| \int_0^t \left(b \frac{\partial f}{\partial x} \right) (X_s) dW_s \right|$ is integrable (alternatively, one could have used also Lemma 4.1.18 in the script). We conclude that for any T > 0, the stopped process $\left(\int \left(b \frac{\partial f}{\partial x} \right) (X_s) dW_s \right)^T$ is a martingale and thus $\int \left(b \frac{\partial f}{\partial x} \right) (X_s) dW_s$ is a martingale.

Updated: May 23, 2017

(b) Fix $n \in \mathbb{N}$ and let $\tau_n := \{t \ge 0 : |X_t - x| \ge n\}$ and $f_n \in C^2_K(\mathbb{R})$ such that $f_n(y) = y$ for $y \in [x - 2n, x + 2n]$. Since X is a continuous solution to the martingale problem for $(\mathcal{A}, C^2_K(\mathbb{R})),$

$$M_t^{f_n} := f_n(X_t) - \int_0^t \mathcal{A}f_n(X_s) \, ds$$

is a martingale. Note that $f_n(y) = y$ and $\mathcal{A}f_n(y) = a(y)$ for $y \in [x - n, x + n]$, and X only takes values in [x - n, x + n] on $[0, \tau_n]$ by construction. Hence, also

$$(M^{f_n})_t^{\tau_n} = f_n(X_t^{\tau_n}) - \int_0^{t \wedge \tau_n} \mathcal{A}f_n(X_s) \, ds = X_t^{\tau_n} - \int_0^{t \wedge \tau_n} a(X_s) \, ds = M_t^{\tau_n}$$

is a martingale. Since $\tau_n \uparrow \infty P$ -a.s., we conclude that M is a continuous local martingale. Choosing $g_n \in C^2_K(\mathbb{R})$ such that $g_n(y) = y^2$ for $y \in [x - 2n, x + 2n]$ and using the same technique as above, we obtain that

$$H_t := (X_t)^2 - \int_0^t \left(2a(X_s)X_s + b^2(X_s) \right) \, ds$$

is a continuous local martingale. Setting $A_t := \int_0^t a(X_s) ds$ and using integration by parts in the fourth equality,

$$(M_t)^2 - \int_0^t b^2 (X_s) \, ds = (X_t - A_t)^2 - \int_0^t b^2 (X_s) \, ds - \left((X_t)^2 - \int_0^t \left(2a(X_s)X_s + b^2(X_s) \right) \, ds \right) + H_t$$

$$= -2X_t A_t + A_t^2 + 2 \int_0^t a(X_s)X_s \, ds + H_t$$

$$= 2 \left(-X_t A_t + \int_0^t A_s \, dA_s + \int_0^t X_s \, dA_s \right) + H_t$$

$$= 2 \left(\int_0^t A_s \, dA_s - \int_0^t A_s \, dX_s \right) + H_t$$

$$= -2 \int_0^t A_s \, dM_s + H_t$$

is a continuous local martingale. Hence, $\langle M \rangle = \int_0^{\cdot} b^2(X_s) ds$.

(c) With M defined as in part b), let

$$B_t := \int_0^t \frac{1}{b(X_s)} \, dM_s, \quad t \ge 0.$$

Then

$$\int_0^t b(X_s) \, dB_s = M_t - M_0 = X_t - X_0 - \int_0^t a(X_s) \, ds$$

It only remains to show that B is a Brownian motion under P. Indeed, $B \in \mathcal{M}_{0,\text{loc}}^c(P)$ since $M \in \mathcal{M}_{0,\text{loc}}^c(P)$ by part **b**), so by Lévy's characterization theorem it suffices to note that

$$\langle B \rangle_t = \int_0^t \frac{1}{b^2(X_s)} \, d\langle M \rangle_s \stackrel{\text{b)}}{=} \int_0^t \frac{1}{b^2(X_s)} \, b^2(X_s) \, ds = t.$$

Exercise 13.3 Linear SDEs

Let $(B_t)_{t \in [0,T]}$ be a Brownian motion in [0,T] and a_1, a_2, b_1, b_2 deterministic functions of time. The general form of a scalar *linear stochastic differential equation* is

$$dX_t = (a_1(t)X_t + a_2(t)) dt + (b_1(t)X_t + b_2(t)) dB_t.$$
(2)

If the coefficients are measurable and bounded on [0, T], we can apply Theorem (10.14) to get existence and uniqueness of a strong solution $(X_t)_{t \in [0,T]}$ for each initial condition x.

(a) When $a_2(t) \equiv 0$ and $b_2(t) \equiv 0$, (2) reduces to the homogeneous linear SDE

$$dX_t = a_1(t)X_t dt + b_1(t)X_t dB_t.$$
 (3)

Show that the solution of (3) with initial data x = 1 is given by

$$X_t = \exp\left(\int_0^t (a_1(s) - \frac{1}{2}b_1^2(s))ds + \int_0^t b_1(s)dB_s\right).$$

Remark: We can write (3) as

$$dX_t = X_t dY_t$$
, where $dY_t = a_1(t)dt + b_1(t)dB_t$

Analogously as in the martingale case, $(X_t)_{t\geq 0}$ is called *stochastic exponential* of $(Y)_{t\geq 0}$ and is denoted by $\mathcal{E}(Y)_t$.

(b) Find a solution of the SDE (2) with initial condition $X_0 = x$.

Hint: Look for a solution of the form

$$X_t = U_t V_t,$$

where

$$dU_t = a_1(t)U_t dt + b_1(t)U_t dB_t, \quad U_0 = 1$$

and

$$dV_t = \alpha(t)dt + \beta(t)dB_t, \quad V_0 = x,$$

with $\alpha(t)$ and $\beta(t)$ coefficients to be determined.

(c) Solve the Langevin's SDE

$$dX_t = a(t)X_tdt + dB_t, \quad X_0 = x.$$

Solution 13.3

(a) Write $X_t = e^{V_t}$ with $V_t = \int_0^t (a_1(s) - \frac{1}{2}b_1^2(s))ds + \int_0^t b_1(s)dB_s$. Then

$$dX_t = e^{V_t} dV_t + \frac{1}{2} e^{V_t} d\langle V \rangle_t.$$

Plug the expression for V_t :

$$dX_t = e^{V_t} \left((a_1(t) - \frac{1}{2}b_1^2(t))dt + b_1(t)dB_t \right) + \frac{1}{2}e^{V_t}b_1^2(t)dt$$

= $X_t \left((a_1(t) + b_1(t)dB_t \right).$

Updated: May 23, 2017

(b) Let us start as in the hint. The process $(U_t)_{t\geq 0}$ is the solution of an homogeneous linear SDE and, using **a**) we know that it is given in explicit form by

$$U_t = \exp\left(\int_0^t (a_1(s) - \frac{1}{2}b_1^2(s))ds + \int_0^t b_1(s)dB_s\right).$$

Now we want to find the coefficients $a_2(t)$ and $b_2(t)$ such that $X_t = U_t V_t$. Applying product formula

$$\beta(t)U_t = b_2(t)$$
, and $\alpha(t)U_t = \alpha(t) - b_1(t)b_2(t)$.

To sum up

$$X_t = U_t \left(x + \int_0^t \frac{a_2(s) - b_1(s)b_2(s)}{U_s} ds + \int_0^t \frac{b_2(s)}{U_s} dB_s \right).$$

(c) Applying point **b**) with $U_t = \exp\left(\int_0^t a(s)ds\right)$ we find

$$X_t = \exp\left(\int_0^t a(s)ds\right) \left(X_0 + \int_0^t \exp\left(-\int_0^u a(s)ds\right) dB_u\right).$$