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Exercise 14.1

(a) Change of time in SDEs Let (ft)t≥0 be an adapted, positive, increasing, differentiable process
starting from zero and consider the following SDE

dXt =
√
f ′tdBt. (1)

Show that the process Bft is a weak solution of (1).

Remark: In other words, given a Brownian motion (Bt)t≥0 and a function f satisfying the
previous assumptions, there exist a Brownian motion (B̂)t≥0, such that

dB̂ft =
√
f ′tdBt.

(b) Recall from Exercise 11-3 that a solution of the SDEs

dXt = −γXtdt+ σdBt, X0 = x, (2)

is called Ornstein-Uhlenbeck process. Show that an Ornstein-Uhlenbeck process has represen-
tation

Xt = e−γtB̃

(
σ2(e2γt − 1)

2γ

)
,

where (B̃t)t≥0 is a Brownian motion started at x.
Remark: Note that the solution given in Exercise 11-3 is a strong solution while the solution
obtained here as a time-changed Brownian motion is a weak solution.

(c) Consider the SDEs
dXt = σ(Xt)dBt, X0 = x, (3)

with σ(x) > 0 such that

G(t) =
∫ t

0

ds

σ2(Bs)
is finite for finite t, and increases to infinity and G(∞) =∞ a.s.
Under this assumptions, (Gt)t≥0 is adapted, continuous and strictly increasing to G(∞) =∞.
Therefore its inverse is well defined:

τt := G
(−1)
t .

Show that the process Xt = Bτt
is a weak solution to the SDE (3).

Hint: Observe that for each t, τt is a stopping time and that (τt)t≥0 is increasing and show
that Xt = Bτt is the solution of the martingale problem associated to (3).

Exercise 14.2 Let X be a Lévy process in Rd and ft(u) = E[ei utrXt ].
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(a) Show that X is stochastically continuous, i.e., for all t, Xt is continuous in probability.

(b) Show that ft+s(u) = ft(u)fs(u) for all s, t ≥ 0 and f0(u) = 1 for any u ∈ Rd.

(c) Use b) to show that fr(u) = f1(u)r for all rational r ≥ 0.

(d) Show that t 7→ ft(u) is right-continuous and conclude that ft(u) = f1(u)t and that ft(u) 6= 0
for all t ≥ 0 and u ∈ Rd.

(e) Let d = 1. If E[|X1|] <∞, then E[Xt] = tE[X1] for all t ≥ 0.

Exercise 14.3

(a) Let N be a one-dimensional Poisson process and (Yi)i≥1 i.i.d. Rd-valued random variables
independent of N . We define the compound Poisson process by Xt :=

∑Nt

i=1 Yi. Show that X
is a Lévy process and calculate its Lévy triplet.

(b) Is there a Lévy process X such that X1 is uniformly distributed on [0, 1]?

(c) Let X and Y be both Lévy processes with respect to a filtration (Ft). Show that if
E[ei utrXtei v

trYt ] = E[ei utrXt ]E[ei vtrYt ] for all u, v ∈ Rd and t ≥ 0, then X and Y are
independent.
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