Brownian Motion and Stochastic Calculus

Exercise sheet 14

 $\label{eq:Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than \\ June 9th$

Exercise 14.1

(a) Change of time in SDEs Let $(f_t)_{t\geq 0}$ be an adapted, positive, increasing, differentiable process starting from zero and consider the following SDE

$$dX_t = \sqrt{f_t'} dB_t. \tag{1}$$

Show that the process B_{f_t} is a <u>weak</u> solution of (1).

Remark: In other words, given a Brownian motion $(B_t)_{t\geq 0}$ and a function f satisfying the previous assumptions, there exist a Brownian motion $(\hat{B})_{t\geq 0}$, such that

$$d\widehat{B}_{f_t} = \sqrt{f'_t} dB_t$$

(b) Recall from **Exercise 11-3** that a solution of the SDEs

$$dX_t = -\gamma X_t dt + \sigma dB_t, \quad X_0 = x, \tag{2}$$

is called Ornstein-Uhlenbeck process. Show that an Ornstein-Uhlenbeck process has representation

$$X_t = e^{-\gamma t} \widetilde{B}\left(\frac{\sigma^2(e^{2\gamma t} - 1)}{2\gamma}\right),\,$$

where $(B_t)_{t>0}$ is a Brownian motion started at x.

Remark: Note that the solution given in **Exercise 11-3** is a strong solution while the solution obtained here as a time-changed Brownian motion is a weak solution.

(c) Consider the SDEs

$$dX_t = \sigma(X_t)dB_t, \quad X_0 = x, \tag{3}$$

with $\sigma(x) > 0$ such that

$$G(t) = \int_0^t \frac{ds}{\sigma^2(B_s)}$$

is finite for finite t, and increases to infinity and $G(\infty) = \infty$ a.s. Under this assumptions, $(G_t)_{t\geq 0}$ is adapted, continuous and strictly increasing to $G(\infty) = \infty$. Therefore its inverse is well defined:

$$\tau_t := G_t^{(-1)}.$$

Show that the process $X_t = B_{\tau_t}$ is a weak solution to the SDE (3). *Hint:* Observe that for each t, τ_t is a stopping time and that $(\tau_t)_{t\geq 0}$ is increasing and show that $X_t = B_{\tau_t}$ is the solution of the martingale problem associated to (3).

Exercise 14.2 Let X be a Lévy process in \mathbb{R}^d and $f_t(u) = E[e^{i u^{\text{tr}} X_t}]$.

Updated: May 29, 2017

- (a) Show that X is stochastically continuous, i.e., for all t, X_t is continuous in probability.
- (b) Show that $f_{t+s}(u) = f_t(u)f_s(u)$ for all $s, t \ge 0$ and $f_0(u) = 1$ for any $u \in \mathbb{R}^d$.
- (c) Use **b**) to show that $f_r(u) = f_1(u)^r$ for all rational $r \ge 0$.
- (d) Show that $t \mapsto f_t(u)$ is right-continuous and conclude that $f_t(u) = f_1(u)^t$ and that $f_t(u) \neq 0$ for all $t \ge 0$ and $u \in \mathbb{R}^d$.
- (e) Let d = 1. If $E[|X_1|] < \infty$, then $E[X_t] = tE[X_1]$ for all $t \ge 0$.

Exercise 14.3

- (a) Let N be a one-dimensional Poisson process and $(Y_i)_{i\geq 1}$ i.i.d. \mathbb{R}^d -valued random variables independent of N. We define the *compound Poisson process* by $X_t := \sum_{i=1}^{N_t} Y_i$. Show that X is a Lévy process and calculate its Lévy triplet.
- (b) Is there a Lévy process X such that X_1 is uniformly distributed on [0, 1]?
- (c) Let X and Y be both Lévy processes with respect to a filtration (\mathcal{F}_t) . Show that if $E[e^{i u^{\text{tr}} X_t} e^{i v^{\text{tr}} Y_t}] = E[e^{i u^{\text{tr}} X_t}] E[e^{i v^{\text{tr}} Y_t}]$ for all $u, v \in \mathbb{R}^d$ and $t \ge 0$, then X and Y are independent.