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Exercise 14.1

(a) Change of time in SDEs Let (ft)t≥0 be an adapted, positive, increasing, differentiable process
starting from zero and consider the following SDE

dXt =
√
f ′tdBt. (1)

Show that the process Bft is a weak solution of (1).

Remark: In other words, given a Brownian motion (Bt)t≥0 and a function f satisfying the
previous assumptions, there exist a Brownian motion (B̂)t≥0, such that

dB̂ft =
√
f ′tdBt.

(b) Recall from Exercise 11-3 that a solution of the SDEs

dXt = −γXtdt+ σdBt, X0 = x, (2)

is called Ornstein-Uhlenbeck process. Show that an Ornstein-Uhlenbeck process has represen-
tation

Xt = e−γtB̃

(
σ2(e2γt − 1)

2γ

)
,

where (B̃t)t≥0 is a Brownian motion started at x.
Remark: Note that the solution given in Exercise 11-3 is a strong solution while the solution
obtained here as a time-changed Brownian motion is a weak solution.

(c) Consider the SDEs
dXt = σ(Xt)dBt, X0 = x, (3)

with σ(x) > 0 such that

G(t) =
∫ t

0

ds

σ2(Bs)
is finite for finite t, and increases to infinity and G(∞) =∞ a.s.
Under this assumptions, (Gt)t≥0 is adapted, continuous and strictly increasing to G(∞) =∞.
Therefore its inverse is well defined:

τt := G
(−1)
t .

Show that the process Xt = Bτt is a weak solution to the SDE (3).
Hint: Observe that for each t, τt is a stopping time and that (τt)t≥0 is increasing and show
that Xt = Bτt

is the solution of the martingale problem associated to (3).

Solution 14.1
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(a) We know that the process

Xt =
∫ t

0

√
f ′tdBt

is a local martingale with quadratic variation 〈X〉t =
∫ t

0 f
′
sds = ft. Denote by τt = f

(−1)
t the

inverse of f . Accordingly to Theorem (7.66) the process X(f (−1)
t ) = B̂t is a Brownian motion

wrt Fτt and
Xt = B̂ft

.

(b) With

ft = σ2 e
2γt − 1

2γ ,

the process B̃(ft) is a weak solution to the SDE

dYt = σeγtdB̃t.

Moreover Xt = e−γtYt. Indeed, integrating by parts,

dXt = −γXtdt+ σdB̃t.

To have X0 = x, take (B̃t)t≥0 to be a Brownian motion started at x.

(c) The operator associated to (5) is given by

Lf(x) = 1
2σ

2(x)f ′′(x).

We want to show that Xt = B(τt) is a solution to the martingale problem for L. Take f ∈ C2
0 ,

then we know that the process

Mt := f(Bt)−
∫ t

0

1
2f
′′(Bs)ds

is a martingale. Moreover (τt)t≥0 is an increasing sequence of stopping times and so (by
OST) the process M(τt) is a martingale. Now we want the find an explicit expression for the
process (τt). Using the formula for the derivative of the inverse function,

(G(−1))′t = 1
G′(G(−1)

t )
= 1
σ2(B(G(−1))t)

= σ2(Bτt). (4)

From (4) we see that (τt)t≥0 satisfies dτt = σ2(Bτt
)dt. Now perform a change of variable

s = τu to obtain that the process

f(Bτt
)−

∫ t

0

1
2σ

2(Bτu
)f ′′(Xu)du

is a martingale and so (Xt)t≥0 solves the martingale problem for L.

Alternative proof (some details are missing) From a) we know that there exists a Brownian
motion (B̂t)t≥0 such that

dXt = dB(G(−1)
t ) =

√
(G(−1))′tdB̂t.

In particular, using the fact that dτt = σ2(Bτt)dt, we get

dB(τt) = σ2(B(τt))dB̂t.
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Exercise 14.2 Let X be a Lévy process in Rd and ft(u) = E[ei utrXt ].

(a) Show that X is stochastically continuous, i.e., for all t, Xt is continuous in probability.

(b) Show that ft+s(u) = ft(u)fs(u) for all s, t ≥ 0 and f0(u) = 1 for any u ∈ Rd.

(c) Use b) to show that fr(u) = f1(u)r for all rational r ≥ 0.

(d) Show that t 7→ ft(u) is right-continuous and conclude that ft(u) = f1(u)t and that ft(u) 6= 0
for all t ≥ 0 and u ∈ Rd.

(e) Let d = 1. If E[|X1|] <∞, then E[Xt] = tE[X1] for all t ≥ 0.

Solution 14.2

(a) Note that P [|Xt+h −Xt| > c] = P [|X|h|| > c]→ 0 as |h| → 0, because X is RC a.s.

(b) f0(u) = 1 is clear. Using independence and stationarity of the increments as well as X0 = 0
P -a.s., we have for any s, t ≥ 0

fs+t(u) = E[exp(iutrXs+t)] = E[exp(iutr(Xs+t −Xs)) exp(iutrXs)]
= E[exp(iutr(Xs+t −Xs))]E[exp(iutrXs)] = E[exp(iutrXt)]E[exp(iutrXs)]
= ft(u)fs(u).

(c) Let m,n ∈ N. Using the property fs+t(u) = fs(u)ft(u) inductively, it follows that

(fm/n(u))n = fm(u) = f1(u)m.

Hence, fm/n(u) = f1(u)m/n.

(d) Right-continuity of t 7→ ft(u) follows immediately from right-continuity of X and the bounded
convergence theorem. Moreover, the function t 7→ f1(u)t is continuous and by part c),
ft(u) = f1(u)t for all t ∈ Q+. It follows that ft(u) = f1(u)t for all t ≥ 0. Now, assume
ft(u) = 0 for some t > 0 and u ∈ Rd. Then it follows that ft/n(u) = ft(u)1/n = 0 for all
n ∈ N. Taking n→∞, we obtain a contradiction to the right-continuity.

(e) The integrability implies that the characteristic function is differentiable in u, and then
Xt ∈ L1 for all t. Moreover,

i E[Xt] = ∂uft(u)|u=0 = tψ′(u)etψ(u)|u=0 = tψ′(0) = i tE[X1].

Updated: May 26, 2017 3 / 7



Brownian Motion and Stochastic Calculus, Spring 2017
D-MATH Exercise sheet 14

Exercise 14.3

(a) Let N be a one-dimensional Poisson process and (Yi)i≥1 i.i.d. Rd-valued random variables
independent of N . We define the compound Poisson process by Xt :=

∑Nt

i=1 Yi. Show that X
is a Lévy process and calculate its Lévy triplet.

(b) Is there a Lévy process X such that X1 is uniformly distributed on [0, 1]?

(c) Let X and Y be both Lévy processes with respect to a filtration (Ft). Show that if
E[ei utrXtei v

trYt ] = E[ei utrXt ]E[ei vtrYt ] for all u, v ∈ Rd and t ≥ 0, then X and Y are
independent.

Solution 14.3

(a) We first show the independence of the increments. Let n ∈ N 0 ≤ t0 < t1... < tn and (fi)ni=1
Borel measurable functions. We need to show that

E

[ n∏
i=1

fi(Xti −Xti−1)
]

=
n∏
i=1

E
[
fi(Xti −Xti−1)

]
.

Let G the σ-field generated by (Nt)t≥0. Then, by independence of the (Yj) to N , we obtain
that

E

[ n∏
i=1

fi(Xti −Xti−1)
]

= E

[ n∏
i=1

fi

( Nti∑
j=Nti−1 +1

Yj

)]

= E

[
E

[ n∏
i=1

fi

( Nti∑
j=Nti−1 +1

Yj

) ∣∣∣∣G]
]

= E

[
E

[ n∏
i=1

fi

( ni∑
j=ni−1+1

Yj

)]∣∣∣∣∣
ni=Nti

,ni−1=Nti−1

]
.

Now, since the (Yj) are i.i.d. we obtain that

E

[
E

[ n∏
i=1

fi

( ni∑
j=ni−1+1

Yj

)]∣∣∣∣∣
ni=Nti

,ni−1=Nti−1

]
= E

[
n∏
i=1

E
[
fi

( ni∑
j=ni−1+1

Yj

)]∣∣∣∣
ni=Nti

,ni−1=Nti−1

]

= E

[
n∏
i=1

E
[
fi

( ni−ni−1∑
j=1

Yj

)]∣∣∣∣
ni=Nti

,ni−1=Nti−1

]

= E

[
n∏
i=1

E
[
fi

( mi∑
j=1

Yj

)]∣∣∣∣
mi=Nti

−Nti−1

]
.

As (Nt) has independent increments we obtain that

E

[
n∏
i=1

E
[
fi

( mi∑
j=1

Yj

)]∣∣∣∣
mi=Nti

−Nti−1

]
= E

[
n∏
i=1

E
[
fi

( mi∑
j=1

Yj

)]∣∣∣∣
mi=Nti

−Nti−1

]

=
n∏
i=1

E

[
E
[
fi

( ni∑
j=ni−1+1

Yj

)]∣∣∣∣
ni=Nti

,ni−1=Nti−1

]

=
n∏
i=1

E
[
fi(Xti −Xti−1)

]
.
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Now, we show that X has stationary increments. As X has independent increments, it’s
enough to show that for s < t and f Borel, we have

E
[
f(Xt −Xs)

]
= E

[
f(Xt−s)

]
.

(see the solution of Exercise 6-3 a) for details). With the same arguments we used for showing
the independence of the increments of X, using that (Nt) has stationary increments, we
obtain that

E
[
f(Xt −Xs)

]
= E

[
f
( Nt∑
j=Ns+1

Yj

)]
= E

[
E

[
f
( Nt∑
j=Ns+1

Yj

) ∣∣∣∣G]
]

= E

[
E

[
f
( nt∑
j=ns+1

Yj

)]∣∣∣∣∣
nt=Nt,ns=Ns

]

= E

[
E

[
f
( nt−ns∑

j=1
Yj

)]∣∣∣∣∣
nt=Nt,ns=Ns

]

= E

[
E

[
f
(mt,s∑
j=1

Yj

)]∣∣∣∣∣
mt,s=Nt−Ns

]

= E

[
E

[
f
(mt,s∑
j=1

Yj

)]∣∣∣∣∣
mt,s=Nt−s

]

= E

[
f
(Nt−s∑
j=1

Yj

)]
= E

[
f(Xt−s)

]
.

We conclude that X is a Lévy process. We proceed with calculating its triplet. For u ∈ Rd,

E[ei u
trXt ] = E

[∑
k≥0

1Nt=k

k∏
j=1

ei u
trYj

]
=
∑
k≥0

P [Nt = k]E[ei u
trY1 ]k =

∑
k≥0

e−λt
(λt)k

k! E[ei u
trY1 ]k

= e−λt exp
(
λtE[ei u

trY1 ]
)

= exp
(
λt
{
E[ei u

trY1 ]− 1
})

.

If F is the distribution of Y1 and ν := λF , we have (for the truncation as in the lecture) the
triplet (b, 0, ν), where b =

∫
{x: |x|≤1} x dν.

(b) We show that any infinite divisible random variable X1 with supp(X1) ⊆ [a, b] for some a < b
is constant. This will imply that there is no Lévy process X with X1 uniformly distributed
on [0, 1].
Let X1 be an infinite divisible random variable with supp(X1) ⊆ [a, b]. By the infinite
divisibility, we have X1 =

∑n
i=1 Y

n
i with (Y ni )ni=1 are i.i.d. This implies that supp(Y ni ) ⊆[

a
n ,

b
n

]
. Indeed, if e.g. P

[
Y ni > b

n

]
> 0, as (Y ni )ni=1 are i.i.d., we would have

P
[
X1 > b

]
≥ P

[ n⋂
i=1
{Y ni >

b

n
}
]

= P
[
Y ni >

b

n

]n
> 0

which is a contradiction to the support of X1 (In the same way as above one can show that
P
[
Y ni < a

n

]
= 0).
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(c) Let n ∈ N and 0 = t0 < t1 < ... < tn. We need to show that (Xt1 , ..., Xtn) is independent of
(Yt1 , ..., Ytn). In the first step, we show that.

E

[
exp

(
i

n∑
k=1

utr
k (Xtk −Xtk−1)

)
exp

(
i

n∑
k=1

vtr
k (Ytk − Ytk−1)

)]

= E

[
exp

(
i

n∑
k=1

utr
k (Xtk −Xtk−1)

)]
E

[
exp

(
i

n∑
k=1

vtr
k (Ytk − Ytk−1)

)]
.

We use an induction argument. For n = 1, this is the assumption. assume that it holds true
for n− 1. We obtain, as the increments are independent of the past, that

E

[
exp

(
i

n∑
k=1

utr
k (Xtk −Xtk−1)

)
exp

(
i

n∑
k=1

vtr
k (Ytk − Ytk−1)

)]

= E

[
exp

(
i

n−1∑
k=1

utr
k (Xtk −Xtk−1)

)
exp

(
i

n−1∑
k=1

vtr
k (Ytk − Ytk−1)

)]
· E
[

exp
(
i utr

n (Xtn −Xtn−1)
)

exp
(
i vtr
n (Ytn − Ytn−1)

)]
.

Now, using the induction hypothesis, we obtain that

= E

[
exp

(
i

n−1∑
k=1

utr
k (Xtk −Xtk−1)

)
exp

(
i

n−1∑
k=1

vtr
k (Ytk − Ytk−1)

)]
· E
[

exp
(
i utr

n (Xtn −Xtn−1)
)

exp
(
i vtr
n (Ytn − Ytn−1)

)]
.

= E

[
exp

(
i

n−1∑
k=1

utr
k (Xtk −Xtk−1)

)]
E

[
exp

(
i

n−1∑
k=1

vtr
k (Ytk − Ytk−1)

)]
· E
[

exp
(
i utr

n (Xtn −Xtn−1)
)

exp
(
i vtr
n (Ytn − Ytn−1)

)]
.

Using again the independence of increments of the past of (Ft), we obtain that

E

[
exp

(
i

n−1∑
k=1

utr
k (Xtk −Xtk−1)

)]
E

[
exp

(
i

n−1∑
k=1

vtr
k (Ytk − Ytk−1)

)]
· E
[

exp
(
i utr

n (Xtn −Xtn−1)
)

exp
(
i vtr
n (Ytn − Ytn−1)

)]
= E

[
exp

(
i

n−1∑
k=1

utr
k (Xtk −Xtk−1)

)]
E

[
exp

(
i

n−1∑
k=1

vtr
k (Ytk − Ytk−1)

)]

·
E

[
exp

(
i utr

nXtn

)
exp

(
i vtr
n Ytn

)]
E

[
exp

(
i utr

nXtn−1

)
exp

(
i vtr
n Ytn−1

)] .
Now, using the assumption that E[ei utrXtei v

trYt ] = E[ei utrXt ]E[ei vtrYt ] for all u, v ∈ Rd and
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t ≥ 0, we obtain that

E

[
exp

(
i

n−1∑
k=1

utr
k (Xtk −Xtk−1)

)]
E

[
exp

(
i

n−1∑
k=1

vtr
k (Ytk − Ytk−1)

)]

·
E

[
exp

(
i utr

nXtn

)
exp

(
i vtr
n Ytn

)]
E

[
exp

(
i utr

nXtn−1

)
exp

(
i vtr
n Ytn−1

)]
= E

[
exp

(
i

n−1∑
k=1

utr
k (Xtk −Xtk−1)

)]
E

[
exp

(
i

n−1∑
k=1

vtr
k (Ytk − Ytk−1)

)]

·
E

[
exp

(
i utr

nXtn

)]
E

[
exp

(
i vtr
n Ytn

)]
E

[
exp

(
i utr

nXtn−1

)]
E

[
exp

(
i vtr
n Ytn−1

)]
using twice the independence of increments of the past of (Ft) yields that

E

[
exp

(
i

n−1∑
k=1

utr
k (Xtk −Xtk−1)

)]
E

[
exp

(
i

n−1∑
k=1

vtr
k (Ytk − Ytk−1)

)]

·
E

[
exp

(
i utr

nXtn

)]
E

[
exp

(
i vtr
n Ytn

)]
E

[
exp

(
i utr

nXtn−1

)]
E

[
exp

(
i vtr
n Ytn−1

)]
= E

[
exp

(
i

n−1∑
k=1

utr
k (Xtk −Xtk−1)

)]
E

[
exp

(
i

n−1∑
k=1

vtr
k (Ytk − Ytk−1)

)]
· E
[

exp
(
i utr

n

(
Xtn −Xtn−1

))]
E

[
exp

(
i vtr
n

(
Ytn − Ytn−1

))]
= E

[
exp

(
i

n∑
k=1

utr
k (Xtk −Xtk−1)

)]
E

[
exp

(
i

n∑
k=1

vtr
k (Ytk − Ytk−1)

)]
.

So we have proved the claim. Next, since characteristic functions determine the law of random
vectors, we conclude that X̄ := (Xt1−Xt0 , ..., Xtn−Xtn−1) and Ȳ := (Yt1−Xt0 , ..., Ytn−Ytn−1)
are independent. Thus, fom the continuity theorem, we obtain that f(X̄) and f(Ȳ ) are
independent for every f continuous. As Xt0 = Yt0 = 0 we can find a linear (and hence
continuous) function f such that f(X̄) = (Xt1 , Xt2 , ..., Xtn) and f(Ȳ ) = (Yt1 , Yt2 , ..., Ytn).
Thus we conclude that (Xt1 , ..., Xtn) and (Yt1 , ..., Ytn) are independent, which was to show.
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