Brownian Motion and Stochastic Calculus

Exercise sheet 1

Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than March 3rd

Exercise 1.1 Let W be a Brownian motion on [0, 1] and define the Brownian bridge $X = (X_t)_{0 \le t \le 1}$ by $X_t = W_t - tW_1$.

- (a) Show that X is a Gaussian process and calculate its mean and covariance functions. Sketch a typical path of X.
- (b) Show that X does **not** have independent increments.

Solution 1.1

(a) We need to show that for any $n \ge 1$ and any $0 \le t_1 \le t_2 \dots \le t_n \le 1$ the random vector $(X_{t_1}, \dots, X_{t_n})$ is a Gaussian vector. However any linear combination of X_{t_1}, \dots, X_{t_n} is also a linear combination of $W_{t_1}, \dots, W_{t_n}, W_1$ which is Gaussian because the Brownian motion is a Gaussian process.

For any $t \in [0, 1]$ we have

$$E[X_t] = E[W_t - t W_1] = 0$$

For any $0 \le s, t \le 1$, using that $Cov(W_t, W_s) = t \land s$ (see Prop 1.15), we have

$$\operatorname{Cov}(X_t, X_s) = \operatorname{Cov}(W_t - t W_1, W_s - s W_1)$$

=
$$\operatorname{Cov}(W_t, W_s) - s \operatorname{Cov}(W_t, W_1) - t \operatorname{Cov}(W_1, W_s) + ts \operatorname{Cov}(W_1, W_1)$$

=
$$t \wedge s - ts.$$

(b) Take any $t \in (0, 1)$. We show that the increment $X_1 - X_t$, $X_t - X_0$ are correlated. In the same way as above we obtain that

$$Cov(X_1 - X_t, X_t - X_0) = Cov(-W_t + tW_1, W_t - tW_1) = t(t-1) \neq 0$$

Exercise 1.2 Let (Ω, \mathcal{F}, P) be a probability space and assume that $X = (X_t)_{t\geq 0}$, $Y = (Y_t)_{t\geq 0}$ are two stochastic processes on (Ω, \mathcal{F}, P) . Two processes Z and Z' on (Ω, \mathcal{F}, P) are said to be *modifications* of each other if $P(Z_t = Z'_t) = 1 \forall t \geq 0$, while Z and Z' are *indistinguishable* if $P(Z_t = Z'_t \forall t \geq 0) = 1$.

(a) Assume that X and Y are both right-continuous or both left-continuous. Show that the processes are modifications of each other if and only if they are indistinguishable.

Remark: A stochastic process is said to have the path property \mathcal{P} (\mathcal{P} can be continuity, right-continuity, differentiability, ...) if the property \mathcal{P} holds for *P*-almost every path.

(b) Give an example showing that one of the implications of part **a**) does not hold for general X, Y.

Solution 1.2

(a) We just show that the fact that X is a modification of Y implies the indistinguishability, since the converse is obvious. Without loss of generality, we assume that X and Y are right-continuous.

For $t \geq 0$, we define the null set $N_t := \{\omega : X_t(\omega) \neq Y_t(\omega)\}$. We consider $N := \bigcup_{t \in \mathbb{Q}_+} N_t$, which remains a null set as a countable union of null sets. Finally, we introduce the null set $A_Z := \{\omega : Z_{\cdot}(\omega) \text{ not right-continuous}\}$ for Z = X, Y and we define $M := A_X \cup A_Y \cup N$, which is still a null set.

It suffices to check that, for all $\omega \in M^c$, $X_t(\omega) = Y_t(\omega) \ \forall t \ge 0$. By definition of M we clearly have that, for $\omega \in M^c$, $X_t(\omega) = Y_t(\omega) \ \forall t \in \mathbb{Q}_+$. Now, take any $t \ge 0$ and let (t_n) be a sequence in \mathbb{Q}_+ with $t_n \downarrow t$. The right-continuity of the paths $X_{\cdot}(\omega)$ and $Y_{\cdot}(\omega)$ then implies $X_t(\omega) = \lim_{n \to \infty} X_{t_n}(\omega) = \lim_{n \to \infty} Y_{t_n}(\omega) = Y_t(\omega)$.

(b) Take $\Omega = [0, \infty)$, $\mathcal{F} = \mathcal{B}([0, \infty))$ the Borel σ -algebra, and P a probability measure with $P(\{\omega\}) = 0 \ \forall \ \omega \in \Omega$ (for instance, the exponential distribution).

Set
$$X \equiv 0$$
 and $Y_t(\omega) = \begin{cases} 1, & t = \omega, \\ 0, & \text{else.} \end{cases}$

Then, $P[X_t = Y_t] = 1 \ \forall t \ge 0$, since single points have no mass, but $\{X_t = Y_t \ \forall t \ge 0\} = \emptyset$. Note that all sample paths of X are continuous, while all sample paths of Y are discontinuous at $t = \omega$. **Exercise 1.3** Let $X = (X_t)_{t\geq 0}$ be a stochastic process defined on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$. The aim of this exercise is to show the following chain of implications:

X optional \Rightarrow X progressively measurable \Rightarrow X product-measurable and adapted.

- (a) Show that every progressively measurable process is product-measurable and adapted.
- (b) Assume that X is adapted and every path of X is right-continuous. Show that X is progressively measurable. *Remark:* The same conclusion holds true if every path of X is left-continuous. *Hint:* For fixed t ≥ 0, consider an approximating sequence of processes Yⁿ on Ω × [0, t] given by Y₀ⁿ = X₀ and Y_uⁿ = Σ^{2ⁿ⁻¹}_{k=0} 1_{(tk2⁻ⁿ,t(k+1)2⁻ⁿ]}(u)X_{t(k+1)2⁻ⁿ} for u ∈ (0, t].
- (c) Recall that the optional σ -field \mathcal{O} is generated by the class $\overline{\mathcal{M}}$ of all adapted processes whose paths are all RCLL. Show that \mathcal{O} is also generated by the subclass \mathcal{M} of all *bounded* processes in $\overline{\mathcal{M}}$.
- (d) Use the monotone class theorem to show that every optional process is progressively measurable.

Solution 1.3

- (a) Let X be progressively measurable. Then $X|_{\Omega\times[0,t]}$ is $\mathcal{F}_t\otimes \mathcal{B}[0,t]$ -measurable for every $t \geq 0$. For any $t \geq 0$, we see that $X_t = X \circ i_t$, where $i_t : (\Omega, \mathcal{F}_t) \to (\Omega \times [0,t], \mathcal{F}_t \otimes \mathcal{B}[0,t]), \omega \mapsto (\omega,t)$ is measurable. Therefore, X_t is \mathcal{F}_t -measurable for every $t \geq 0$. Moreover, the processes X^n defined by $X_u^n := X|_{\Omega\times[0,n]} \mathbb{1}_{[0,n]}(u), u \geq 0$, are $\mathcal{F} \otimes \mathcal{B}[0,\infty)$ -measurable. Since $X^n \to X$ pointwise (in (t, ω)) as $n \to \infty$, also X is $\mathcal{F} \otimes \mathcal{B}[0,\infty)$ -measurable.
- (b) Fix a $t \geq 0$ and consider the sequence of processes Y^n on $\Omega \times [0,t]$ given by $Y_0^n = X_0$ and $Y_u^n = \sum_{k=1}^{2^n-1} \mathbb{1}_{(tk2^{-n},t(k+1)2^{-n}]}(u)X_{t(k+1)2^{-n}}$ for $u \in (0,t]$. By construction, each Y^n is $\mathcal{F}_t \otimes \mathcal{B}[0,t]$ -measurable. Since $Y^n \to X|_{\Omega \times [0,t]}$ pointwise as $n \to \infty$ due to right-continuity, the result follows.
- (c) Let X be adapted, with all paths being RCLL. Consider the processes $X^n := (X \wedge n) \vee (-n)$. Clearly, each X^n is bounded and RCLL. Thus, each X^n is $\sigma(\mathcal{M})$ -measurable. As the pointwise limit of the X^n , also X is $\sigma(\mathcal{M})$ -measurable. It follows that $\mathcal{O} \subset \sigma(\mathcal{M})$. The reverse inclusion is trivial.
- (d) If a process X is optional, then Xⁿ := X 1_{|X|≤n} is also optional and of course Xⁿ → X; so if each Xⁿ is progressively measurable, then so is X, and hence we can assume without loss of generality that X is bounded. Let H denote the real vector space of bounded, progressively measurable processes. By part b), H contains M. Clearly, H contains the constant process 1 and is closed under monotone bounded convergence. Also, M is closed under multiplication. The monotone class theorem yields that every bounded σ(M)-measurable process is contained in H. Due to c), we conclude that every bounded optional process is progressively measurable.