Brownian Motion and Stochastic Calculus

Exercise sheet 2

Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than March 10th

Exercise 2.1 Let X be a real valued random variable with standard normal distribution as law and Y a random variable independent of X with law defined by

P[Y = 1] = p and P[Y = -1] = 1 - p, $(0 \le p \le 1)$.

We define Z := XY.

- (a) What is the law of Z? Is the vector (X, Z) a Gaussian vector?
- (b) Calculate Cov(X, Z). For which $p \in [0, 1]$ are the random variables X and Z uncorrelated, i.e. Cov(X, Z) = 0?
- (c) Show that for each $p \in [0, 1]$, the random variables X and Z are **not** independent.

Exercise 2.2 Let (Ω, \mathcal{F}, P) be a probability space, W a Brownian motion on $[0, \infty)$, Z a random variable independent of W such that $P[Z = 1] = P[Z = -1] = \frac{1}{2}$, and $t^* \in [0, \infty)$. We define another stochastic process $W' = (W'_t)_{t \geq 0}$ by

$$W'_t = W_t \mathbb{1}_{\{t < t^*\}} + \left(W_{t^*} + Z(W_t - W_{t^*}) \right) \mathbb{1}_{\{t \ge t^*\}}.$$

Show that W' is a Brownian motion.

Interpretation: W' is obtained from W by flipping an independent fair coin at t^* and reflecting the W-trajectories after t^* at the level W_{t^*} if head comes up.

Exercise 2.3 Let X be a stochastic process on a probability space (Ω, \mathcal{F}, P) with $X_0 = 0$ *P*-a.s., and let $\mathbb{F}^X = (\mathcal{F}^X_t)_{t\geq 0}$ denote the (raw) filtration generated by X, i.e., $\mathcal{F}^X_t = \sigma(X_s; s \leq t)$. Show that the following two properties are equivalent:

- (i) X has independent increments, i.e., for all $n \in \mathbb{N}$ and $0 \leq t_0 < t_1 < \cdots < t_n < \infty$, the increments $X_{t_i} X_{t_{i-1}}$, $i = 1, \ldots, n$, are independent.
- (ii) X has \mathbb{F}^X -independent increments, i.e., $X_t X_s$ is independent of \mathcal{F}^X_s whenever t > s.

Remark: This also shows the equivalence between the two definitions of Brownian motion with properties (BM2) and (BM2'), respectively.

Hint: For proving "(i) \Rightarrow (ii)", you can use the monotone class theorem. When choosing \mathcal{H} , recall that a random variable Y is independent of a σ -algebra \mathcal{G} if and only if one has the product formula E[g(Y)Z] = E[g(Y)]E[Z] for all bounded Borel-measurable functions $g: \mathbb{R} \to \mathbb{R}$ and all bounded \mathcal{G} -measurable random variables Z.

Exercise 2.4 The objective of this problem is to prove that there exists some probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and measurable function W from (Ω, \mathcal{F}) to $(C[0, 1], \mathcal{B}(C[0, 1]))$ (The continuous functions with its Borel σ -algebra) such that W, under \mathbb{P} , has the law of a Brownian motion.

- (a) Suppose that $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ is big enough so it contains a sequence $(Y_{n,k})_{n,l\geq 0}$ i.i.d. standard normal. Show that $\omega \mapsto W^N_{\cdot}(\omega) := Y_{0,0}(\omega)\varphi_0(\cdot) + \sum_{n=0}^N \sum_{k=1}^{2^n} Y_{n,k}(\omega)\varphi_{n,k}(\cdot)$ is a measurable function from $(\tilde{\Omega}, \tilde{\mathcal{F}})$ to $(C[0, 1], \mathcal{B}(C[0, 1]))$. Here $\varphi_{n,k}$ are the Schauder functions.
- (b) Show that there exist a measurable subset of $\Omega \subseteq \tilde{\Omega}$ with $\tilde{\mathbb{P}}(\Omega) = 1$ such that for all $\omega \in \Omega$, $W_{\cdot}(\omega)^N \to W_{\cdot}(\omega)$ as $N \to \infty$ in the topology of C[0,1]. Conclude that $\omega \mapsto W_{\cdot}(\omega)$ is a measurable function from $(\Omega, \mathcal{F}, \mathbb{P})$ to $(C[0,1], \mathcal{B}(C[0,1]))$, where \mathcal{F} and \mathbb{P} are the restriction of $\tilde{\mathcal{F}}$ and $\tilde{\mathbb{P}}$ to Ω , and that the law of W_t is that of a Brownian Motion.