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Exercise 2.1 Let X be a real valued random variable with standard normal distribution as law
and Y a random variable independent of X with law defined by

PlY=1=p and PY=-1]=1-p, (0<p<1).
We define Z := XY
(a) What is the law of Z? Is the vector (X, Z) a Gaussian vector?

(b) Calculate Cov(X, Z). For which p € [0,1] are the random variables X and Z uncorrelated,
ie. Cov(X,Z) =07

(c¢) Show that for each p € [0, 1], the random variables X and Z are not independent.

Solution 2.1

(a) We show that Z ~ N(0,1) by calculating its characteristic function. Using the independence
of X and Y and that X and —X ~ N(0,1), we get for each ¢ € R that
pz(t) = E[e"?] = E["* 1iyopy ] + B[ Liy—1)]
= E[e"*] P[Y =1] + E[e”"*] P[Y = —1]
— 142

=e 2

To prove that (X, Z) is a Gaussian vector, we need to show that for any A, Ay € R, the
random variable A\ X + A2Z is normal distributed. Fix any A1, Ao € R.
For p € {0,1} we see that

>\1X + )\2Z =cX

for some ¢ € R. Therefore, as X ~ N(0,1) we get that \; X + 22 ~ N(0, ¢?) and thus (X, Z)
is a Gaussian vector.

Now, let p € [0,1] \ {0,1}. Assume by contradiction that (X, Z) is a Gaussian vector. Then
X + Z is normal distributed. But since P[X = 0] = 0 as X is normal distributed, we get that

P X+Z=0=PY=-1=1-p#0
which gives a contradiction. We conclude that

(X, Z) is a Gaussian vector <= p € {0, 1}.

(b) Using that X ~ N(0, 1), the independence of X and Y and that E[Y] = 2p — 1, we get
Cov(X,Z) = E[X?Y] - E[X] E[XY]
= B[x?] E[Y]
= Var(X) E[Y]
=2p—1.

Therefore,
Cov(X,Z) =0<=p=1/2.
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(¢) Assume by contradiction that X and Z are independent. Then, as Z ~ N(0, 1),

O:P{|Z\>1‘|X|§1]:P{\Z\>1];é()

which gives a contradiction.

Alternative proof: For p € (0,1), if X and Z were independent, since by a) X and Z are
normal distributed, (X, Z) would be a Gaussian vector, which is a contradiction to a). For
p € {0,1}, it is clear that we do not have independence, since in that case

X=Z7 as. or X=—-Z7 as.
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Exercise 2.2 Let (2,7, P) be a probability space, W a Brownian motion on [0, 00), Z a random
variable independent of W such that P[Z = 1] = P[Z = —1] = 1, and t* € [0,00). We define
another stochastic process W/ = (W/);>o by

Wi = Wilgery + (Wt* +Z(W, — Wt*)> Loy

Show that W' is a Brownian motion.
Interpretation: W' is obtained from W by flipping an independent fair coin at t* and reflecting the

W-trajectories after t* at the level Wy« if head comes up.

Solution 2.2 Tt is clear that P(W] = 0) = 1 and that W’ is P-a.s. continuous. It is only left
to prove that it has normal independent increments with the correct variance. To do that take
0<t)<. <ty <tr<tpy1 <. <t, and see that the characteristic function of the random vector
Vo= (WY, =W, W =W/ ), ov(A, .0 An), is

E |exp iZ)\j(W{j—Wt/jfl)

= E |: Z>\k+1 W W/ +Z W’J 1):| E |:eiZ(>\k+1( tk+1 +Z7 k+z thjl)):|
= exp )‘k+1 - ) Z >‘2 E {eiz()\Hl(W‘/HlW‘,*szku Aj(W{jW{jl))} )

where we have used that all coordinates of V' are independent and that V is independent from

Z. And that the characteristic function of a centred normal random variable with variance o2 is

©()\) = exp(—A202/2). To conclude note that

. ’ ’ n / ’
E {ezz(k’““(wtkﬂ Wi )+Zj=k+2 A (We; =W ))}

n

B EIEI [emkﬂ(wgk+1 Wi )+i ST, AW~ W 1)} N %]E {e_mk“(vvgk+1 W)= N W =W )

2

1 o 1 ¢
= exp _5)\%+1(tk+1 - t ) - 5 Z )\?(tj - tjfl)
j=k+2

Thus,

1 n
eV (A1, .y Ap) = exp ~5 Z)\?(tj
j=1

which is exactly the characteristic function of centred independent normal variables with the
required variance.
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Exercise 2.3 Let X be a stochastic process on a probability space (2, F, P) with Xg =0 P-a.s.,
and let FX = (F7);>0 denote the (raw) filtration generated by X, i.e., FX = o (X,; s < t). Show
that the following two properties are equivalent:

(i) X has independent increments, i.e., for allm € Nand 0 < ¢y < t; < -+ < t, < 00, the
increments X;, — X; i=1,...,n, are independent.

i—17
(ii) X has FX -independent increments, i.e., X; — X is independent of FX whenever t > s.

Remark: This also shows the equivalence between the two definitions of Brownian motion with
properties (BM2) and (BM2'), respectively.

Hint: For proving “(i) = (ii)”, you can use the monotone class theorem. When choosing H, recall
that a random variable Y is independent of a o-algebra § if and only if one has the product formula
Elg(Y)Z] = E[g(Y)]E[Z] for all bounded Borel-measurable functions g : R — R and all bounded
G-measurable random variables Z.

Solution 2.3 First, assume that X has independent increments and fix ¢ > s > 0. The family
{Hh meN0<s <- <sn§s,hi:R%RBorelandbounded}

of bounded, real-valued functions on € is closed under multiplication. Moreover, note that
o(M) = FX. Let H denote the real vector space of all bounded, real-valued, FX-measurable
functions Z on 2 with the property that:

Elg(X: — X,)Z] = Elg(X: — X;)|E[Z] for all bounded Borel functions g : R — R.

Clearly, H contains the constant function 1 and is closed under monotone bounded convergence
(we even do not need monotonicity).

Next, we show that H contains M. Fix a typical element Z = []\_; h;(X,,) in M. Define the
function h : R™ — R by h(z) = [[;-, hi(z;) where z = (z1,...,2,) € R". Note that h is again a
Borel function. Then we can write Z = h(X,,,..., X, ). Since Xy =0 P-a.s., we also have

(Xory o Xo,) = f(Xs, — X0, Xoy — Xoy oo, Xo, — Xs, ) P-as.

for a linear transformation f. Finally,

Elg(X: — Xs)Z] = Elg(X; — X)Xy, ..o, X))
= Elg(X; — Xs)(ho f)(Xs, — X0y Xy — Xsyyooos X, — X, )]
= Elg(X; — Xs)]E[(h ° f)( s — X0, Xoy = Xopy oo, X, — X, )]
= Elg(X: — X,)|E[Z]

where we use the assumption that X; — X is independent of (X, — Xo, X5, — X515+, X
in the third equality. Thus, Z € H.

The monotone class theorem yields that 3 contains every bounded FX-measurable function on
Q. In particular, X; — X, is independent of FX.

For the converse implication, we proceed by induction on n. The case n = 1 is trivial, so fix
n>20<ty<t;<...<t, <oo,and A; € B(R), i =1,...,n. Conditioning on F;* , and using
(ii) for t = t,, and s = ¢,_1, we obtain

—Xsn—l)

n

n—1

ﬂ (th - th'fl)il(Ai) P [(th - th71)71(‘4n)] :

=1

n

P ﬂ(Xt1 _Xti71)71(‘4i)

i=1

=P

Applying the induction hypothesis to the first factor on the right-hand side completes the proof.
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Exercise 2.4 The objective of this problem is to prove that there exists some probability space
(©,F,P) and measurable function W from (2, F) to (C[0, 1], B(C0,1]) (The continuous functions
with its Borel o-algebra) such that W, under P, has the law of a Brownian motion.

(a) Suppose that (Q,F,P) is big enough so it contains a sequence (Y 1)n>0 ii.d. standard
normal. Show that w — W (w) := Yg o(w)po(*) + ZTJLO Zi:l Yo i (w)@n.k(+) is a measurable
function from (€2, ¥) to (C0, 1], B(CI0,1])). Here ¢,  are the Schauder functions.

(b) Show that there exist a measurable subset of Q C Q with P(Q) = 1 such that for all w € Q,
W.(w)N — W.(w) as N — oo in the topology of C[0,1]. Conclude that w + W.(w) is a
measurable function from (Q, F,P) to (C[0,1], B(C]0,1])), where F and P are the restriction
of F and P to €, and that the law of W, is that of a Brownian Motion.

Solution 2.4

(a) Note that the functions w — ¢, and w — Y, x(w) are measurable. So W} is also measurable.

(b) In Theorem (5.11) of the script it has been shown that P-a.s. W (w) converges uniformly
to some W°(w). By definition of P-a.s., we have that measurable subset of Q C Q with
P(w) = 1 such that for all w € Q, WV (w) — W>(w) as N — oo in the topology of C[0, 1].
Under (€2, F,P) we also have that WV are measurable functions, thus W is a measurable
function with the law of a BM thanks to Theorem 5.11 and the fact that for any measurable
event A, P(A) = P(ANQ).
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