Brownian Motion and Stochastic Calculus

Exercise sheet 3

Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than March 17th

Exercise 3.1 Let $X=\left(X^{1}, \ldots, X^{d}\right)$ be an \mathbb{R}^{d}-valued stochastic process on $[0,1]$. For $x=$ $\left(x^{1}, \ldots, x^{d}\right) \in \mathbb{R}^{d}$ with Euclidean norm $\|x\|=1$, we define the process $Y^{x}=\left(Y_{t}^{x}\right)_{0 \leq t \leq 1}$ by

$$
Y_{t}^{x}=x^{\top} X_{t}=\sum_{i=1}^{d} x^{i} X_{t}^{i}
$$

Prove that if X is a Brownian motion in \mathbb{R}^{d}, then every Y^{x} is a Brownian motion in \mathbb{R}.
Exercise 3.2 Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion and consider the process X defined by

$$
X_{t}:=e^{-t} B_{e^{2 t}}, \quad t \in \mathbb{R}
$$

(a) Show that $X_{t} \sim \mathcal{N}(0,1), \quad \forall t \in \mathbb{R}$.
(b) Show that the process $\left(X_{t}\right)_{t \in \mathbb{R}}$ is time reversible, i.e. $\left(X_{t}\right)_{t \geq 0} \stackrel{\text { Law }}{=}\left(X_{-t}\right)_{t \geq 0}$.

Hint: Use the time inversion property of Brownian motion, i.e., if W is a Brownian motion, then

$$
X_{t}:=\left\{\begin{array}{l}
0, \quad \text { if } t=0 \\
t W_{1 / t}, \quad \text { if } t>0
\end{array}\right.
$$

is also a Brownian motion.

Exercise 3.3 Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of random variables with $X_{n} \sim \mathcal{N}\left(\mu_{n}, \sigma_{n}^{2}\right)$ for each $n \in \mathbb{N}$.
(a) Show that if the sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$ converges in distribution to a random variable X, then the limits $\mu:=\lim _{n \rightarrow \infty} \mu_{n}$ and $\sigma^{2}:=\lim _{n \rightarrow \infty} \sigma_{n}^{2}$ exist and $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
(b) Show that if $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a Gaussian process indexed by \mathbb{N} and converges in probability to a random variable X as n goes to infinity, then it converges also in L^{2} to X.

Exercise 3.4 Matlab Exercise The goal of this exercise is illustrate the Wiener-Lévy representation of Brownian motion. Therefore, for $n \in \mathbb{N}$ let $\phi_{n, k}$ and ϕ_{0} denote the Schauder functions, i.e.,

$$
\begin{aligned}
\phi_{0}(t) & :=t \\
\phi_{n, k}(t) & :=2^{n / 2}\left(t-(k-1) 2^{-n}\right) I_{J_{2 k-1, n+1}}-2^{n / 2}\left(t-k 2^{-n}\right) I_{J_{2 k, n+1}}(t),
\end{aligned}
$$

where $I_{A}(t)$ denotes the indicator function on A and

$$
J_{k, n}=\left((k-1) 2^{-n}, k 2^{-n}\right], \quad \text { for } \quad k=1, \ldots, 2^{n} .
$$

That is, the graph of $\phi_{n, k}$ is a triangle over $J_{k, n}$ with its peak of height $2^{-n / 2-1}$ at the middle point $(2 k-1) 2^{-(n+1)}$. Moreover, let Y_{0} and $Y_{n, k}$ be i.i.d standard normal random variables and define for $N \leq \infty$

$$
W_{t}^{N}:=Y_{0} \phi_{0}(t)+\sum_{n=0}^{N} \sum_{k=1}^{2^{n}} Y_{n, k} \phi_{n, k}(t) .
$$

We know from the lecture that W^{∞} is well-defined and is a Brownian motion.
Simulate 10 sample paths of the process W^{N} with $N=12$. In this exercise you can set $T=1$ and use an equidistant time grid with 2000 grid points, i.e., $t_{i}=i / M, i=0, \ldots, M=2 \cdot 10^{3}$. Hint:

- First write a function schauderfunction (n, k, t) which computes the schauder functions for given n, k and t
- Figure out how many iid normal random variables you need and compute W^{N} by sequentially adding the new increments

