Brownian Motion and Stochastic Calculus

Exercise sheet 3

Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than March 17th

Exercise 3.1 Let $X = (X^1, \ldots, X^d)$ be an \mathbb{R}^d -valued stochastic process on [0, 1]. For $x = (x^1, \ldots, x^d) \in \mathbb{R}^d$ with Euclidean norm ||x|| = 1, we define the process $Y^x = (Y_t^x)_{0 \le t \le 1}$ by

$$Y_t^x = x^\top X_t = \sum_{i=1}^d x^i X_t^i.$$

Prove that if X is a Brownian motion in \mathbb{R}^d , then every Y^x is a Brownian motion in \mathbb{R} .

Exercise 3.2 Let $(B_t)_{t>0}$ be a Brownian motion and consider the process X defined by

$$X_t := e^{-t} B_{e^{2t}}, \quad t \in \mathbb{R}.$$

- (a) Show that $X_t \sim \mathcal{N}(0, 1), \quad \forall t \in \mathbb{R}.$
- (b) Show that the process (X_t)_{t∈ℝ} is time reversible, i.e. (X_t)_{t≥0} ^{Law} (X_{-t})_{t≥0}. *Hint:* Use the time inversion property of Brownian motion, i.e., if W is a Brownian motion, then

$$X_t := \begin{cases} 0, & \text{if } t = 0, \\ tW_{1/t}, & \text{if } t > 0, \end{cases}$$

is also a Brownian motion.

Exercise 3.3 Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of random variables with $X_n \sim \mathcal{N}(\mu_n, \sigma_n^2)$ for each $n \in \mathbb{N}$.

- (a) Show that if the sequence $(X_n)_{n\in\mathbb{N}}$ converges in distribution to a random variable X, then the limits $\mu := \lim_{n\to\infty} \mu_n$ and $\sigma^2 := \lim_{n\to\infty} \sigma_n^2$ exist and $X \sim \mathcal{N}(\mu, \sigma^2)$.
- (b) Show that if $(X_n)_{n \in \mathbb{N}}$ is a Gaussian process indexed by \mathbb{N} and converges in probability to a random variable X as n goes to infinity, then it converges also in L^2 to X.

Exercise 3.4 Matlab Exercise The goal of this exercise is illustrate the Wiener-Lévy representation of Brownian motion. Therefore, for $n \in \mathbb{N}$ let $\phi_{n,k}$ and ϕ_0 denote the Schauder functions, i.e.,

$$\phi_0(t) := t
\phi_{n,k}(t) := 2^{n/2} (t - (k - 1)2^{-n}) I_{J_{2k-1,n+1}} - 2^{n/2} (t - k2^{-n}) I_{J_{2k,n+1}}(t),$$

where $I_A(t)$ denotes the indicator function on A and

$$J_{k,n} = ((k-1)2^{-n}, k2^{-n}], \text{ for } k = 1, \dots, 2^n.$$

That is, the graph of $\phi_{n,k}$ is a triangle over $J_{k,n}$ with its peak of height $2^{-n/2-1}$ at the middle point $(2k-1)2^{-(n+1)}$. Moreover, let Y_0 and $Y_{n,k}$ be i.i.d standard normal random variables and define for $N \leq \infty$

$$W_t^N := Y_0 \phi_0(t) + \sum_{n=0}^N \sum_{k=1}^{2^n} Y_{n,k} \phi_{n,k}(t).$$

We know from the lecture that W^{∞} is well-defined and is a Brownian motion. Simulate 10 sample paths of the process W^N with N = 12. In this exercise you can set T = 1 and use an equidistant time grid with 2000 grid points, i.e., $t_i = i/M, i = 0, \ldots, M = 2 \cdot 10^3$. *Hint:*

- First write a function schauderfunction(n,k,t) which computes the schauder functions for given n, k and t
- Figure out how many iid normal random variables you need and compute W^N by sequentially adding the new increments