Brownian Motion and Stochastic Calculus

Exercise sheet 3

Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than March 17th

Exercise 3.1 Let $X=\left(X^{1}, \ldots, X^{d}\right)$ be an \mathbb{R}^{d}-valued stochastic process on $[0,1]$. For $x=$ $\left(x^{1}, \ldots, x^{d}\right) \in \mathbb{R}^{d}$ with Euclidean norm $\|x\|=1$, we define the process $Y^{x}=\left(Y_{t}^{x}\right)_{0 \leq t \leq 1}$ by

$$
Y_{t}^{x}=x^{\top} X_{t}=\sum_{i=1}^{d} x^{i} X_{t}^{i}
$$

Prove that if X is a Brownian motion in \mathbb{R}^{d}, then every Y^{x} is a Brownian motion in \mathbb{R}.
Solution 3.1 It is clear that Y^{x} is \mathbb{P}-a.s. continuous, and a centred Gaussian process. Additionally, for all $s \leq t$

$$
\mathbb{E}\left[Y_{s}^{x} Y_{t}^{x}\right]=\mathbb{E}\left[\sum_{i, j=1}^{d} x_{i} x_{j} X_{s}^{i} X_{t}^{j}\right]=\sum_{i, j=1}^{d} x_{i} x_{j} \mathbb{E}\left[X_{s}^{i} X_{t}^{j}\right]=\sum_{i=1}^{d} x_{i}^{2} \mathbb{E}\left[X_{s}^{i} X_{t}^{j}\right]=s
$$

where we have used that due to the independence the cross terma are always 0 . Proposition (1.4) of the script implies our result.

Exercise 3.2 Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion and consider the process X defined by

$$
X_{t}:=e^{-t} B_{e^{2 t}}, \quad t \in \mathbb{R}
$$

(a) Show that $X_{t} \sim \mathcal{N}(0,1), \quad \forall t \in \mathbb{R}$.
(b) Show that the process $\left(X_{t}\right)_{t \in \mathbb{R}}$ is time reversible, i.e. $\left(X_{t}\right)_{t \geq 0} \stackrel{\text { Law }}{=}\left(X_{-t}\right)_{t \geq 0}$.

Hint: Use the time inversion property of Brownian motion, i.e., if W is a Brownian motion, then

$$
X_{t}:=\left\{\begin{array}{l}
0, \quad \text { if } t=0 \\
t W_{1 / t}, \quad \text { if } t>0
\end{array}\right.
$$

is also a Brownian motion.

Solution 3.2

(a) Fix any $t \in \mathbb{R}$. Since Brownian motion B is a Gaussian process, we get by definition that X_{t} is Gaussian distributed. It remains to check its mean and variance:

$$
\begin{aligned}
\mathrm{E}\left[X_{t}\right] & =0 \\
\operatorname{Var}\left(X_{t}\right) & =e^{-2 t} e^{2 t}=1
\end{aligned}
$$

(b) Fix any $n \in \mathbb{N}$ and any $t_{1}, t_{2}, \ldots, t_{n} \geq 0$. It is enough to check that

$$
\left(X_{-t_{1}}, X_{-t_{2}}, \ldots, X_{-t_{n}}\right) \stackrel{\text { Law }}{=}\left(X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}\right)
$$

From the invariance by time inversion property of Brownian motion (cf. Proposition 1.1 in Section 2.1)), we get that for any $\tilde{t}_{1}, \ldots, \tilde{t}_{n} \geq 0$

$$
\left(\tilde{t}_{1} B_{1 / \tilde{t}_{1}}, \tilde{t}_{2} B_{1 / \tilde{t}_{2}}, \ldots, \tilde{t}_{n} B_{1 / \tilde{t}_{n}}\right) \stackrel{L a w}{=}\left(B_{\tilde{t}_{1}}, B_{\tilde{t}_{2}}, \ldots, B_{\tilde{t}_{n}}\right)
$$

Therefore, for $\tilde{t}_{i}:=e^{-2 t_{i}}, i:=1, \ldots, n$, we get that

$$
\begin{aligned}
\left(X_{-t_{1}}, X_{-t_{2}}, \ldots, X_{-t_{n}}\right) & =\left(e^{t_{1}} B_{e^{-2 t_{1}}}, e^{t_{2}} B_{e^{-2 t_{2}}}, \ldots, e^{t_{n}} B_{e^{-2 t_{n}}}\right) \\
& \stackrel{L a w}{=}\left(e^{-t_{1}} B_{e^{2 t_{1}}}, e^{-t_{2}} B_{e^{2 t_{2}}}, \ldots, e^{-t_{n}} B_{e^{2 t_{n}}}\right) \\
& =\left(X_{t_{1}}, X_{t_{2}}, \ldots, X_{t_{n}}\right) .
\end{aligned}
$$

Exercise 3.3 Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of random variables with $X_{n} \sim \mathcal{N}\left(\mu_{n}, \sigma_{n}^{2}\right)$ for each $n \in \mathbb{N}$.
(a) Show that if the sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$ converges in distribution to a random variable X, then the limits $\mu:=\lim _{n \rightarrow \infty} \mu_{n}$ and $\sigma^{2}:=\lim _{n \rightarrow \infty} \sigma_{n}^{2}$ exist and $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
(b) Show that if $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a Gaussian process indexed by \mathbb{N} and converges in probability to a random variable X as n goes to infinity, then it converges also in L^{2} to X.

Solution 3.3 Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a sequence of random variables with $X_{n} \sim \mathcal{N}\left(\mu_{n}, \sigma_{n}^{2}\right)$ for each $n \in \mathbb{N}$.
(a) Since $\left(X_{n}\right)_{n \in \mathbb{N}}$ converges in distribution to X, we know from the continuity theorem for characteristic functions that for any $t \in \mathbb{R}$

$$
\begin{equation*}
\varphi_{X_{n}}(t)=\exp \left(i t \mu_{n}-\frac{t^{2} \sigma_{n}^{2}}{2}\right) \longrightarrow \varphi_{X}(t) \quad \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

By taking absolute values, we see that

$$
\begin{equation*}
\left|\varphi_{X}(t)\right|=\lim _{n \rightarrow \infty} \exp \left(-\frac{t^{2} \sigma_{n}^{2}}{2}\right) \tag{2}
\end{equation*}
$$

Moreover, φ_{X} is continuous in 0 . Therefore, as $\varphi_{X}(0)=1$, we can find $t_{0} \neq 0$ such that $\varphi\left(t_{0}\right) \neq 0$. Taking the logarithm in (2), we see that the $\lim _{n \rightarrow \infty} \sigma_{n}^{2}$ exists and

$$
\lim _{n \rightarrow \infty} \sigma_{n}^{2}=-\frac{2}{t_{0}^{2}} \log \left|\varphi_{X}\left(t_{0}\right)\right|=: \sigma^{2}
$$

As a consequence, due to (1), we see that the sequence

$$
\begin{equation*}
\exp \left(i t \mu_{n}\right)=\exp \left(\frac{t^{2} \sigma_{n}^{2}}{2}\right) \varphi_{X_{n}}(t) \tag{3}
\end{equation*}
$$

converges pointwise for any $t \in \mathbb{R}$ as n goes to infinity.
Next, we prove that the sequence $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ converges. Set

$$
\underline{\mu}:=\liminf _{n \rightarrow \infty} \mu_{n} \quad \text { and } \quad \bar{\mu}:=\limsup _{n \rightarrow \infty} \mu_{n}
$$

We claim that $\bar{\mu}<\infty$. Assume by contradiction that $\bar{\mu}=\infty$. In that case, we find a subsequence $\left(\mu_{n_{k}}\right)_{k \in \mathbb{N}}$ which diverge to infinity. For any point $a \in \mathbb{R}$ such that $P[X=a]=0$, we deduce from the Portemonteau theorem of weak convergence that

$$
\lim _{k \rightarrow \infty} P\left[X_{n_{k}} \leq a\right]=P[X \leq a]
$$

Let $Y \sim \mathcal{N}(0,1)$. By definition of $X_{n_{k}}$,

$$
P\left[X_{n_{k}} \leq a\right]=P\left[\mu_{n_{k}}+\sigma_{n_{k}} Y \leq a\right]
$$

By the divergence property of the sequence $\left(\mu_{n_{k}}\right)_{k \in \mathbb{N}}$, since $\left(\sigma_{n_{k}}\right)_{k \in \mathbb{N}}$ converges, we conclude that $\mu_{n_{k}}+\sigma_{n_{k}} Y$ converges P-a.s. to infinity. Thus, we get that $P[X \leq a]=0$. But since we can find arbitrarily big points a satisfying $P[X=a]=0$, we get a contradiction to the fact that $\lim _{a \rightarrow \infty} P[X \leq a]=1$ by the definition of a cumulative distribution function. Thus, we conclude that $\bar{\mu}<\infty$. With a similar argument, one can show that $\underline{\mu}>-\infty$. Therefore, we deduce from the pointwise convergence of the sequence in (3) that for any $t \in \mathbb{R}$

$$
\exp (i t \underline{\mu})=\exp (i t \bar{\mu})
$$

Thus, we get that for any $t \in \mathbb{R}$

$$
t(\bar{\mu}-\underline{\mu}) \equiv 0 \quad(\bmod 2 \pi)
$$

which implies that $\underline{\mu}=\bar{\mu}$. In other words, $\mu:=\lim _{n \rightarrow \infty} \mu_{n}$ exists. As a consequence of (1), we get that for any $t \in \mathbb{R}$

$$
\varphi_{X}(t)=\exp \left(i t \mu-\frac{t^{2} \sigma^{2}}{2}\right)
$$

and thus, $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
(b) Since $\left(X_{n}\right)_{n \in \mathbb{N}}$ converges in probability to $X,\left(X_{n}-X\right)_{n \in \mathbb{N}}$ converges in probability to 0 and hence $\left(X_{n}-X\right)_{n \in \mathbb{N}}$ converges in distribution to 0 .
Fix any $n \in \mathbb{N}$. The sequence $\left(X_{n}-X_{k}\right)_{k \in \mathbb{N}}$ converges in probability to $X_{n}-X$ and hence $\left(X_{n}-X_{k}\right)_{k \in \mathbb{N}}$ converges in distribution to $X_{n}-X$. Now, since by assumption $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a Gaussian process, we get that for each $k, X_{n}-X_{k}$ is normal distributed. Thus, we deduce from part a) that $X_{n}-X$ is normal distributed. Since $n \in \mathbb{N}$ was arbitrarily chosen, we get that $\left(X_{n}-X\right)_{n \in \mathbb{N}}$ is a sequence of Gaussian random variables. Moreover, since $\left(X_{n}-X\right)_{n \in \mathbb{N}}$ converges in distribution to 0 , we deduce again from a) that

$$
E\left[X_{n}-X\right] \longrightarrow 0 \quad \text { and } \quad \operatorname{Var}\left(X_{n}-X\right) \longrightarrow 0 \quad \text { as } n \rightarrow \infty
$$

As a consequence, we get directly the L^{2} convergence of X_{n} to X, since

$$
\left\|X_{n}-X\right\|_{L^{2}}^{2}=E\left[\left|X_{n}-X\right|^{2}\right]=\left(E\left[X_{n}-X\right]\right)^{2}+\operatorname{Var}\left(X_{n}-X\right)
$$

Exercise 3.4 Matlab Exercise The goal of this exercise is illustrate the Wiener-Lévy representation of Brownian motion. Therefore, for $n \in \mathbb{N}$ let $\phi_{n, k}$ and ϕ_{0} denote the Schauder functions, i.e.,

$$
\begin{aligned}
\phi_{0}(t) & :=t \\
\phi_{n, k}(t) & :=2^{n / 2}\left(t-(k-1) 2^{-n}\right) I_{J_{2 k-1, n+1}}-2^{n / 2}\left(t-k 2^{-n}\right) I_{J_{2 k, n+1}}(t)
\end{aligned}
$$

where $I_{A}(t)$ denotes the indicator function on A and

$$
J_{k, n}=\left((k-1) 2^{-n}, k 2^{-n}\right], \quad \text { for } \quad k=1, \ldots, 2^{n}
$$

That is, the graph of $\phi_{n, k}$ is a triangle over $J_{k, n}$ with its peak of height $2^{-n / 2-1}$ at the middle point $(2 k-1) 2^{-(n+1)}$. Moreover, let Y_{0} and $Y_{n, k}$ be i.i.d standard normal random variables and define for $N \leq \infty$

$$
W_{t}^{N}:=Y_{0} \phi_{0}(t)+\sum_{n=0}^{N} \sum_{k=1}^{2^{n}} Y_{n, k} \phi_{n, k}(t)
$$

We know from the lecture that W^{∞} is well-defined and is a Brownian motion.
Simulate 10 sample paths of the process W^{N} with $N=12$. In this exercise you can set $T=1$ and use an equidistant time grid with 2000 grid points, i.e., $t_{i}=i / M, i=0, \ldots, M=2 \cdot 10^{3}$.

Hint:

- First write a function schauderfunction(n, k, t) which computes the schauder functions for given n, k and t
- Figure out how many iid normal random variables you need and compute W^{N} by sequentially adding the new increments

Solution 3.4 Matlab Files

```
function bmscex 34
\% In this exercise we simulate Brownian motion using the Wiener-Levy
\% Representation (see Corollary I.(5.16) in the lecture notes)
\% upper bound on n
\(n \max =12\);
\% number of iid normal variables
\(\mathrm{N}=\operatorname{sum}(2 . \wedge[1: \operatorname{nmax}])\);
\% number of sample paths
\(\mathrm{M}=10\);
\% final time
\(\mathrm{T}=1\);
\% number of grid points
gridpoi \(=2000\);
\% time grid
grid \(=0: T /\) gridpoi: \(T\);
\% iid std normal random variables
\(\mathrm{Y}=\mathrm{randn}(\mathrm{N}, \mathrm{M})\);
\% output matrix \((\mathrm{N}, \mathrm{M})=(\mathrm{N} * 1) *(1 * \mathrm{M})\) matrix, initialize for \(\mathrm{n}=0\) : Y_0*phi_0
    ( t )
out \(=\) grid \(^{\prime} *\) randn \((1, \mathrm{M})\);
\% use the definition of WN
for \(n=1\) :nmax
    for \(k=1:\left(2^{\wedge} n\right)\)
```

```
        % formula I.(5.8)
    out=out+(schauderba(n,k,grid)) '*Y(2^(n-1)+k,: );
    end
end
plot(grid,out)
title('BM with Wiener-Levy representation');
xlabel('time');
ylabel('value');
end
function[value]=schauderba(n,k,t)
% the function implements the schauderbasis function see definition I
        (5.7)
ind1=t> (2*k-2)*2^(-(n+1));
ind2=t<= (2*k-1)*2^(-(n+1));
ind 3=1-ind2;
ind4=t<=2*k*2^(-(n+1));
% Definition of the Schauder basis function definition I (5.7)
value=(ind1.*ind2).*2^(n/2).*( t-(k-1)*2^(-n))...
    -(ind3.*ind4).*2^}(\textrm{n}/2).*(\textrm{t}-\textrm{k}*\mp@subsup{2}{}{\wedge}(-\textrm{n}))
end
```

