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Exercise 3.1 Let X = (X1, . . . , Xd) be an Rd-valued stochastic process on [0, 1]. For x =
(x1, . . . , xd) ∈ Rd with Euclidean norm ‖x‖ = 1, we define the process Y x = (Y x

t )0≤t≤1 by

Y x
t = x>Xt =

d∑
i=1

xiXi
t .

Prove that if X is a Brownian motion in Rd, then every Y x is a Brownian motion in R.

Solution 3.1 It is clear that Y x is P-a.s. continuous, and a centred Gaussian process. Additionally,
for all s ≤ t

E [Y x
s Y

x
t ] = E

 d∑
i,j=1

xixjX
i
sX

j
t

 =
d∑

i,j=1
xixjE

[
Xi

sX
j
t

]
=

d∑
i=1

x2
iE
[
Xi

sX
j
t

]
= s

where we have used that due to the independence the cross terma are always 0. Proposition (1.4)
of the script implies our result.
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Exercise 3.2 Let (Bt)t≥0 be a Brownian motion and consider the process X defined by

Xt := e−tBe2t , t ∈ R.

(a) Show that Xt ∼ N(0, 1), ∀t ∈ R.

(b) Show that the process (Xt)t∈R is time reversible, i.e. (Xt)t≥0
Law= (X−t)t≥0.

Hint: Use the time inversion property of Brownian motion, i.e., if W is a Brownian motion,
then

Xt :=
{

0, if t = 0,
tW1/t, if t > 0,

is also a Brownian motion.

Solution 3.2

(a) Fix any t ∈ R. Since Brownian motion B is a Gaussian process, we get by definition that Xt

is Gaussian distributed. It remains to check its mean and variance:

E[Xt] = 0,
Var(Xt) = e−2te2t = 1.

(b) Fix any n ∈ N and any t1, t2, ..., tn ≥ 0. It is enough to check that(
X−t1 , X−t2 , ..., X−tn

) Law=
(
Xt1 , Xt2 , ..., Xtn

)
.

From the invariance by time inversion property of Brownian motion (cf. Proposition 1.1 in
Section 2.1)), we get that for any t̃1, ..., t̃n ≥ 0(

t̃1B1/t̃1 , t̃2B1/t̃2 , ..., t̃nB1/t̃n

) Law=
(
Bt̃1 , Bt̃2 , ..., Bt̃n

)
.

Therefore, for t̃i := e−2ti , i := 1, ..., n, we get that(
X−t1 , X−t2 , ..., X−tn

)
=
(
et1Be−2t1 , e

t2Be−2t2 , ..., e
tnBe−2tn

)
Law=

(
e−t1Be2t1 , e

−t2Be2t2 , ..., e
−tnBe2tn

)
=
(
Xt1 , Xt2 , ..., Xtn

)
.
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Exercise 3.3 Let (Xn)n∈N be a sequence of random variables with Xn ∼ N(µn, σ
2
n) for each

n ∈ N.

(a) Show that if the sequence (Xn)n∈N converges in distribution to a random variable X, then
the limits µ := lim

n→∞
µn and σ2 := lim

n→∞
σ2

n exist and X ∼ N(µ, σ2).

(b) Show that if (Xn)n∈N is a Gaussian process indexed by N and converges in probability to a
random variable X as n goes to infinity, then it converges also in L2 to X.

Solution 3.3 Let (Xn)n∈N be a sequence of random variables with Xn ∼ N(µn, σ
2
n) for each

n ∈ N.

(a) Since (Xn)n∈N converges in distribution to X, we know from the continuity theorem for
characteristic functions that for any t ∈ R

ϕXn(t) = exp
(
itµn −

t2σ2
n

2

)
−→ ϕX(t) as n→∞. (1)

By taking absolute values, we see that

|ϕX(t)| = lim
n→∞

exp
(
− t2σ2

n

2

)
. (2)

Moreover, ϕX is continuous in 0. Therefore, as ϕX(0) = 1, we can find t0 6= 0 such that
ϕ(t0) 6= 0. Taking the logarithm in (2), we see that the lim

n→∞
σ2

n exists and

lim
n→∞

σ2
n = − 2

t20
log |ϕX(t0)| =: σ2

As a consequence, due to (1), we see that the sequence

exp
(
itµn

)
= exp

( t2σ2
n

2

)
ϕXn(t) (3)

converges pointwise for any t ∈ R as n goes to infinity.
Next, we prove that the sequence (µn)n∈N converges. Set

µ := lim inf
n→∞

µn and µ := lim sup
n→∞

µn.

We claim that µ < ∞. Assume by contradiction that µ = ∞. In that case, we find a
subsequence (µnk

)k∈N which diverge to infinity. For any point a ∈ R such that P [X = a] = 0,
we deduce from the Portemonteau theorem of weak convergence that

lim
k→∞

P [Xnk
≤ a] = P [X ≤ a].

Let Y ∼ N(0, 1). By definition of Xnk
,

P [Xnk
≤ a] = P [µnk

+ σnk
Y ≤ a].

By the divergence property of the sequence (µnk
)k∈N, since (σnk

)k∈N converges, we conclude
that µnk

+ σnk
Y converges P -a.s. to infinity. Thus, we get that P [X ≤ a] = 0. But since we

can find arbitrarily big points a satisfying P [X = a] = 0, we get a contradiction to the fact
that lima→∞ P [X ≤ a] = 1 by the definition of a cumulative distribution function. Thus, we
conclude that µ <∞. With a similar argument, one can show that µ > −∞. Therefore, we
deduce from the pointwise convergence of the sequence in (3) that for any t ∈ R

exp
(
itµ
)

= exp
(
itµ
)
.
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Thus, we get that for any t ∈ R

t(µ− µ) ≡ 0 (mod 2π)

which implies that µ = µ. In other words, µ := lim
n→∞

µn exists. As a consequence of (1), we
get that for any t ∈ R

ϕX(t) = exp
(
itµ− t2σ2

2

)
and thus, X ∼ N(µ, σ2).

(b) Since (Xn)n∈N converges in probability to X, (Xn −X)n∈N converges in probability to 0 and
hence (Xn −X)n∈N converges in distribution to 0.
Fix any n ∈ N. The sequence (Xn −Xk)k∈N converges in probability to Xn −X and hence
(Xn −Xk)k∈N converges in distribution to Xn −X. Now, since by assumption (Xn)n∈N is a
Gaussian process, we get that for each k, Xn −Xk is normal distributed. Thus, we deduce
from part a) that Xn −X is normal distributed. Since n ∈ N was arbitrarily chosen, we get
that (Xn −X)n∈N is a sequence of Gaussian random variables. Moreover, since (Xn −X)n∈N
converges in distribution to 0, we deduce again from a) that

E[Xn −X] −→ 0 and Var(Xn −X) −→ 0 as n→∞.

As a consequence, we get directly the L2 convergence of Xn to X, since

‖Xn −X‖2
L2 = E

[
|Xn −X|2

]
=
(
E[Xn −X]

)2 + Var
(
Xn −X

)
.
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Exercise 3.4 Matlab Exercise The goal of this exercise is illustrate the Wiener-Lévy represen-
tation of Brownian motion. Therefore, for n ∈ N let φn,k and φ0 denote the Schauder functions,
i.e.,

φ0(t) := t

φn,k(t) := 2n/2(t− (k − 1)2−n)IJ2k−1,n+1 − 2n/2(t− k2−n)IJ2k,n+1(t),

where IA(t) denotes the indicator function on A and

Jk,n = ((k − 1)2−n, k2−n], for k = 1, . . . , 2n.

That is, the graph of φn,k is a triangle over Jk,n with its peak of height 2−n/2−1 at the middle point
(2k − 1)2−(n+1). Moreover, let Y0 and Yn,k be i.i.d standard normal random variables and define
for N ≤ ∞

WN
t := Y0φ0(t) +

N∑
n=0

2n∑
k=1

Yn,kφn,k(t).

We know from the lecture that W∞ is well-defined and is a Brownian motion.
Simulate 10 sample paths of the process WN with N = 12. In this exercise you can set T = 1 and
use an equidistant time grid with 2000 grid points, i.e., ti = i/M, i = 0, . . . ,M = 2 · 103.
Hint:

• First write a function schauderfunction(n,k,t) which computes the schauder functions for
given n, k and t

• Figure out how many iid normal random variables you need and compute WN by sequentially
adding the new increments

Solution 3.4 Matlab Files

1 f unc t i on bmscex34
2 % In t h i s e x e r c i s e we s imulate Brownian motion us ing the Wiener−Levy
3 % Representat ion ( see Coro l l a ry I . ( 5 . 1 6 ) in the l e c t u r e notes )
4

5 % upper bound on n
6 nmax=12;
7 % number o f i i d normal v a r i a b l e s
8 N=sum ( 2 . ^ [ 1 : nmax ] ) ;
9 % number o f sample paths

10 M=10;
11 % f i n a l time
12 T=1;
13 % number o f g r id po in t s
14 g r i dpo i =2000;
15 % time gr id
16 g r id =0:T/ g r i dpo i :T;
17 % i i d std normal random va r i a b l e s
18 Y=randn (N,M) ;
19 % output matrix (N,M)=(N∗1) ∗(1∗M) matrix , i n i t i a l i z e f o r n=0: Y_0∗phi_0

( t )
20 out=grid ’∗ randn (1 ,M) ;
21

22 % use the d e f i n i t i o n o f Ŵ N
23 f o r n=1:nmax
24 f o r k=1:(2^n)
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25 % formula I . ( 5 . 8 )
26 out=out+(schauderba (n , k , g r id ) ) ’∗Y(2^(n−1)+k , : ) ;
27 end
28 end
29 p lo t ( gr id , out )
30 t i t l e ( ’BM with Wiener−Levy r ep r e s en t a t i on ’ ) ;
31 x l ab e l ( ’ time ’ ) ;
32 y l ab e l ( ’ va lue ’ ) ;
33 end
34

35

36 f unc t i on [ va lue ]= schauderba (n , k , t )
37 % the func t i on implements the schauderbas i s f unc t i on see d e f i n i t i o n I

( 5 . 7 )
38 ind1=t> (2∗k−2)∗2^(−(n+1) ) ;
39 ind2=t<= (2∗k−1)∗2^(−(n+1) ) ;
40

41 ind3=1−ind2 ;
42 ind4=t<=2∗k∗2^(−(n+1) ) ;
43

44 % De f i n i t i o n o f the Schauder ba s i s f unc t i on d e f i n i t i o n I ( 5 . 7 )
45 value=(ind1 .∗ ind2 ) .∗2^(n/2) . ∗ ( t−(k−1)∗2^(−n) ) . . .
46 −( ind3 .∗ ind4 ) .∗2^(n/2) . ∗ ( t−k∗2^(−n) ) ;
47 end
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