Brownian Motion and Stochastic Calculus

Exercise sheet 3

 $\label{eq:Please} Please \ hand \ in \ your \ solutions \ during \ exercise \ class \ or \ in \ your \ assistant's \ box \ in \ HG \ E65 \ no \ latter \ than \\ March \ 17th$

Exercise 3.1 Let $X = (X^1, \ldots, X^d)$ be an \mathbb{R}^d -valued stochastic process on [0, 1]. For $x = (x^1, \ldots, x^d) \in \mathbb{R}^d$ with Euclidean norm ||x|| = 1, we define the process $Y^x = (Y_t^x)_{0 \le t \le 1}$ by

$$Y_t^x = x^\top X_t = \sum_{i=1}^d x^i X_t^i.$$

Prove that if X is a Brownian motion in \mathbb{R}^d , then every Y^x is a Brownian motion in \mathbb{R} .

Solution 3.1 It is clear that Y^x is \mathbb{P} -a.s. continuous, and a centred Gaussian process. Additionally, for all $s \leq t$

$$\mathbb{E}\left[Y_s^x Y_t^x\right] = \mathbb{E}\left[\sum_{i,j=1}^d x_i x_j X_s^i X_t^j\right] = \sum_{i,j=1}^d x_i x_j \mathbb{E}\left[X_s^i X_t^j\right] = \sum_{i=1}^d x_i^2 \mathbb{E}\left[X_s^i X_t^j\right] = s$$

where we have used that due to the independence the cross terms are always 0. Proposition (1.4) of the script implies our result.

Exercise 3.2 Let $(B_t)_{t\geq 0}$ be a Brownian motion and consider the process X defined by

$$X_t := e^{-t} B_{e^{2t}}, \quad t \in \mathbb{R}$$

- (a) Show that $X_t \sim \mathcal{N}(0, 1), \quad \forall t \in \mathbb{R}.$
- (b) Show that the process $(X_t)_{t \in \mathbb{R}}$ is time reversible, i.e. $(X_t)_{t \ge 0} \stackrel{Law}{=} (X_{-t})_{t \ge 0}$. *Hint:* Use the time inversion property of Brownian motion, i.e., if W is a Brownian motion, then

$$X_t := \begin{cases} 0, & \text{if } t = 0, \\ tW_{1/t}, & \text{if } t > 0, \end{cases}$$

is also a Brownian motion.

Solution 3.2

(a) Fix any $t \in \mathbb{R}$. Since Brownian motion B is a Gaussian process, we get by definition that X_t is Gaussian distributed. It remains to check its mean and variance:

$$E[X_t] = 0,$$

 $Var(X_t) = e^{-2t}e^{2t} = 1.$

(b) Fix any $n \in \mathbb{N}$ and any $t_1, t_2, ..., t_n \ge 0$. It is enough to check that

$$(X_{-t_1}, X_{-t_2}, ..., X_{-t_n}) \stackrel{Law}{=} (X_{t_1}, X_{t_2}, ..., X_{t_n}).$$

From the invariance by time inversion property of Brownian motion (cf. Proposition 1.1 in Section 2.1)), we get that for any $\tilde{t}_1, ..., \tilde{t}_n \ge 0$

$$(\tilde{t}_1 B_{1/\tilde{t}_1}, \tilde{t}_2 B_{1/\tilde{t}_2}, ..., \tilde{t}_n B_{1/\tilde{t}_n}) \stackrel{Law}{=} (B_{\tilde{t}_1}, B_{\tilde{t}_2}, ..., B_{\tilde{t}_n}).$$

Therefore, for $\tilde{t}_i := e^{-2t_i}$, i := 1, ..., n, we get that

$$\begin{pmatrix} X_{-t_1}, X_{-t_2}, \dots, X_{-t_n} \end{pmatrix} = \begin{pmatrix} e^{t_1} B_{e^{-2t_1}}, e^{t_2} B_{e^{-2t_2}}, \dots, e^{t_n} B_{e^{-2t_n}} \end{pmatrix}$$
$$\stackrel{Law}{=} \begin{pmatrix} e^{-t_1} B_{e^{2t_1}}, e^{-t_2} B_{e^{2t_2}}, \dots, e^{-t_n} B_{e^{2t_n}} \end{pmatrix}$$
$$= \begin{pmatrix} X_{t_1}, X_{t_2}, \dots, X_{t_n} \end{pmatrix}.$$

Exercise 3.3 Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of random variables with $X_n \sim \mathcal{N}(\mu_n, \sigma_n^2)$ for each $n \in \mathbb{N}$.

- (a) Show that if the sequence $(X_n)_{n \in \mathbb{N}}$ converges in distribution to a random variable X, then the limits $\mu := \lim_{n \to \infty} \mu_n$ and $\sigma^2 := \lim_{n \to \infty} \sigma_n^2$ exist and $X \sim \mathcal{N}(\mu, \sigma^2)$.
- (b) Show that if $(X_n)_{n \in \mathbb{N}}$ is a Gaussian process indexed by \mathbb{N} and converges in probability to a random variable X as n goes to infinity, then it converges also in L^2 to X.

Solution 3.3 Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of random variables with $X_n \sim \mathcal{N}(\mu_n, \sigma_n^2)$ for each $n \in \mathbb{N}$.

(a) Since $(X_n)_{n \in \mathbb{N}}$ converges in distribution to X, we know from the continuity theorem for characteristic functions that for any $t \in \mathbb{R}$

$$\varphi_{X_n}(t) = \exp\left(it\mu_n - \frac{t^2\sigma_n^2}{2}\right) \longrightarrow \varphi_X(t) \quad \text{as } n \to \infty.$$
 (1)

By taking absolute values, we see that

$$|\varphi_X(t)| = \lim_{n \to \infty} \exp\left(-\frac{t^2 \sigma_n^2}{2}\right).$$
(2)

Moreover, φ_X is continuous in 0. Therefore, as $\varphi_X(0) = 1$, we can find $t_0 \neq 0$ such that $\varphi(t_0) \neq 0$. Taking the logarithm in (2), we see that the $\lim_{n \to \infty} \sigma_n^2$ exists and

$$\lim_{n \to \infty} \sigma_n^2 = -\frac{2}{t_0^2} \log |\varphi_X(t_0)| =: \sigma^2$$

As a consequence, due to (1), we see that the sequence

1

$$\exp\left(it\mu_n\right) = \exp\left(\frac{t^2\sigma_n^2}{2}\right)\varphi_{X_n}(t) \tag{3}$$

converges pointwise for any $t \in \mathbb{R}$ as n goes to infinity. Next, we prove that the sequence $(\mu_n)_{n \in \mathbb{N}}$ converges. Set

$$\underline{\mu} := \liminf_{n \to \infty} \mu_n \quad \text{and} \quad \overline{\mu} := \limsup_{n \to \infty} \mu_n.$$

We claim that $\overline{\mu} < \infty$. Assume by contradiction that $\overline{\mu} = \infty$. In that case, we find a subsequence $(\mu_{n_k})_{k \in \mathbb{N}}$ which diverge to infinity. For any point $a \in \mathbb{R}$ such that P[X = a] = 0, we deduce from the Portemonteau theorem of weak convergence that

$$\lim_{k \to \infty} P[X_{n_k} \le a] = P[X \le a].$$

Let $Y \sim \mathcal{N}(0, 1)$. By definition of X_{n_k} ,

$$P[X_{n_k} \le a] = P[\mu_{n_k} + \sigma_{n_k}Y \le a].$$

By the divergence property of the sequence $(\mu_{n_k})_{k\in\mathbb{N}}$, since $(\sigma_{n_k})_{k\in\mathbb{N}}$ converges, we conclude that $\mu_{n_k} + \sigma_{n_k} Y$ converges *P*-a.s. to infinity. Thus, we get that $P[X \leq a] = 0$. But since we can find arbitrarily big points *a* satisfying P[X = a] = 0, we get a contradiction to the fact that $\lim_{a\to\infty} P[X \leq a] = 1$ by the definition of a cumulative distribution function. Thus, we conclude that $\overline{\mu} < \infty$. With a similar argument, one can show that $\underline{\mu} > -\infty$. Therefore, we deduce from the pointwise convergence of the sequence in (3) that for any $t \in \mathbb{R}$

$$\exp\left(it\mu\right) = \exp\left(it\overline{\mu}\right).$$

Updated: March 20, 2017

Thus, we get that for any $t \in \mathbb{R}$

$$t(\overline{\mu} - \mu) \equiv 0 \pmod{2\pi}$$

which implies that $\underline{\mu} = \overline{\mu}$. In other words, $\mu := \lim_{n \to \infty} \mu_n$ exists. As a consequence of (1), we get that for any $t \in \mathbb{R}$

$$\varphi_X(t) = \exp\left(it\mu - \frac{t^2\sigma^2}{2}\right)$$

and thus, $X \sim \mathcal{N}(\mu, \sigma^2)$.

- (b) Since $(X_n)_{n \in \mathbb{N}}$ converges in probability to X, $(X_n X)_{n \in \mathbb{N}}$ converges in probability to 0 and hence $(X_n X)_{n \in \mathbb{N}}$ converges in distribution to 0.
 - Fix any $n \in \mathbb{N}$. The sequence $(X_n X_k)_{k \in \mathbb{N}}$ converges in probability to $X_n X$ and hence $(X_n X_k)_{k \in \mathbb{N}}$ converges in distribution to $X_n X$. Now, since by assumption $(X_n)_{n \in \mathbb{N}}$ is a Gaussian process, we get that for each k, $X_n X_k$ is normal distributed. Thus, we deduce from part a) that $X_n X$ is normal distributed. Since $n \in \mathbb{N}$ was arbitrarily chosen, we get that $(X_n X)_{n \in \mathbb{N}}$ is a sequence of Gaussian random variables. Moreover, since $(X_n X)_{n \in \mathbb{N}}$ converges in distribution to 0, we deduce again from a) that

$$E[X_n - X] \longrightarrow 0$$
 and $Var(X_n - X) \longrightarrow 0$ as $n \to \infty$.

As a consequence, we get directly the L^2 convergence of X_n to X, since

$$||X_n - X||_{L^2}^2 = E[|X_n - X|^2] = (E[X_n - X])^2 + \operatorname{Var}(X_n - X).$$

$$\phi_0(t) := t$$

$$\phi_{n,k}(t) := 2^{n/2} (t - (k - 1)2^{-n}) I_{J_{2k-1,n+1}} - 2^{n/2} (t - k2^{-n}) I_{J_{2k,n+1}}(t),$$

where $I_A(t)$ denotes the indicator function on A and

$$J_{k,n} = ((k-1)2^{-n}, k2^{-n}], \text{ for } k = 1, \dots, 2^n.$$

That is, the graph of $\phi_{n,k}$ is a triangle over $J_{k,n}$ with its peak of height $2^{-n/2-1}$ at the middle point $(2k-1)2^{-(n+1)}$. Moreover, let Y_0 and $Y_{n,k}$ be i.i.d standard normal random variables and define for $N \leq \infty$

$$W_t^N := Y_0 \phi_0(t) + \sum_{n=0}^N \sum_{k=1}^{2^n} Y_{n,k} \phi_{n,k}(t).$$

We know from the lecture that W^{∞} is well-defined and is a Brownian motion. Simulate 10 sample paths of the process W^N with N = 12. In this exercise you can set T = 1 and use an equidistant time grid with 2000 grid points, i.e., $t_i = i/M$, $i = 0, \ldots, M = 2 \cdot 10^3$. *Hint:*

- First write a function schauderfunction(n,k,t) which computes the schauder functions for given n, k and t
- Figure out how many iid normal random variables you need and compute W^N by sequentially adding the new increments

Solution 3.4 Matlab Files

```
function bmscex34
1
  % In this exercise we simulate Brownian motion using the Wiener-Levy
 \% Representation (see Corollary I.(5.16) in the lecture notes)
4
  % upper bound on n
5
6 \text{ nmax}=12;
 % number of iid normal variables
7
  N = sum (2. [1:nmax]);
  % number of sample paths
9
<sup>10</sup> M=10;
11 % final time
12 T=1;
13 % number of grid points
_{14} gridpoi=2000;
15 % time grid
_{16} grid=0:T/gridpoi:T;
17 % iid std normal random variables
<sup>18</sup> Y=randn(N,M);
  % output matrix (N,M)=(N*1)*(1*M) matrix, initialize for n=0: Y_0*phi_0
19
      (t)
  out=grid '*randn(1,M);
20
21
22 % use the definition of WN
  for n=1:nmax
23
       for k=1:(2^n)
^{24}
```

Updated: March 20, 2017

```
% formula I.(5.8)
^{25}
        out=out+(schauderba(n,k,grid))'*Y(2^(n-1)+k,:);
26
        end
27
  end
^{28}
   plot(grid,out)
^{29}
   title('BM with Wiener-Levy representation');
30
   xlabel('time');
31
   ylabel('value');
32
33
   end
^{34}
35
   function [value] = schauderba(n,k,t)
36
  \% the function implements the schauderbasis function see definition I
37
       (5.7)
   ind1=t> (2*k-2)*2^{(-(n+1))};
38
   ind2=t \le (2*k-1)*2^{(-(n+1))};
39
40
  ind3=1-ind2;
^{41}
  ind4=t <= 2*k*2^{(-(n+1))};
^{42}
43
  \% Definition of the Schauder basis function definition I (5.7)
44
  value=(ind1.*ind2).*2^{(n/2)}.*(t-(k-1)*2^{(-n)})...
^{45}
        -(ind3.*ind4).*2^{(n/2)}.*(t-k*2^{(-n)});
46
  end
\mathbf{47}
```