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Exercise 3.1 Let X = (X!,..., X9) be an R%valued stochastic process on [0,1]. For z =
(z1,...,2%) € R? with Euclidean norm ||z = 1, we define the process Y? = (Y;®)g<;<1 by

YP=2"X, = leX’

Prove that if X is a Brownian motion in R?, then every Y® is a Brownian motion in R.

Solution 3.1 It is clear that Y* is P-a.s. continuous, and a centred Gaussian process. Additionally,
forall s <t

d d
E[YSY?] = Z v XiX) | = Y waE [X;’th} =Y 2%E [XjX{] =5
1,j=1 i,j=1 i=1

where we have used that due to the independence the cross terma are always 0. Proposition (1.4)
of the script implies our result.
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Exercise 3.2 Let (B;);>0 be a Brownian motion and consider the process X defined by
X, :=e ‘B, teR.

(a) Show that X; ~N(0,1), VteR.

Law

(b) Show that the process (Xy)icr is time reversible, i.e. (Xi)i>0 = (X_¢)i>0.

Hint: Use the time inversion property of Brownian motion, i.e., if W is a Brownian motion,

then
X, = 0, ift : 0,
th/t7 if t > O7

is also a Brownian motion.

Solution 3.2

(a) Fix any t € R. Since Brownian motion B is a Gaussian process, we get by definition that X,
is Gaussian distributed. It remains to check its mean and variance:

E[X:] = 0,
Var(X;) = e e =1.

(b) Fix any n € N and any t1,ta, ..., t, > 0. It is enough to check that

(X0, X oo X)) "2 (X, Xy, ooy X ).

From the invariance by time inversion property of Brownian motion (cf. Proposition 1.1 in
Section 2.1)), we get that for any #1,...,£, >0

(11By i, 82By iy, s tnBa i) "2 (Bg,, Biy - By

Therefore, for ¢; := e~2%, i:=1,...,n, we get that

t t t,
(Xftl,X,tQ, ...,Xftn) = (6 1Be—2t1,e 2B€—2t2, ey € "Be—2tn)
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Exercise 3.3 Let (X,)nen be a sequence of random variables with X,, ~ N(u,,02) for each
n € N.

(a) Show that if the sequence (X,,)nen converges in distribution to a random variable X, then

the limits g := lim p, and o?:= lim o2 exist and X ~ N(u,o?).
n—o0 n—00

(b) Show that if (X,,)nen is a Gaussian process indexed by N and converges in probability to a
random variable X as n goes to infinity, then it converges also in L? to X.
Solution 3.3 Let (X, ),en be a sequence of random variables with X,, ~ N(uy,,02) for each

n € N.

(a) Since (X, )nen converges in distribution to X, we know from the continuity theorem for
characteristic functions that for any ¢t € R

202
vx, (t) = exp (itpnf ”) — px(t) asn— 0. (1)
By taking absolute values, we see that
. t?02
lox(t)l = lim exp ( - T) (2)

Moreover, ¢x is continuous in 0. Therefore, as ¢ x(0) = 1, we can find ¢y # 0 such that
¢(to) # 0. Taking the logarithm in (2), we see that the lim o2 exists and

n
n—oo

, 2
im0 =~z loglpx (to)| = o*

As a consequence, due to (1), we see that the sequence

t202

exp (itpin) = exp ( 5 ”) px, () (3)

converges pointwise for any ¢ € R as n goes to infinity.
Next, we prove that the sequence (p,)nen converges. Set

p:=liminf g, and 7 :=limsup u,.
- n—00 n— 00
We claim that @ < oo. Assume by contradiction that 7 = oco. In that case, we find a
subsequence (i, )reny which diverge to infinity. For any point a € R such that P[X = a] = 0,
we deduce from the Portemonteau theorem of weak convergence that
lim P[X,, <a]=P[X <a.

k— o0
Let Y ~ N(0,1). By definition of X,,, ,
P[Xnk S a‘] = P[:u‘nk +JnkY S (L].

By the divergence property of the sequence (pin, )ren, since (o, )ren converges, we conclude
that fin, + 0n,Y converges P-a.s. to infinity. Thus, we get that P[X < a] = 0. But since we
can find arbitrarily big points a satisfying P[X = a] = 0, we get a contradiction to the fact
that lim,_, o P[X < a] =1 by the definition of a cumulative distribution function. Thus, we
conclude that 7t < co. With a similar argument, one can show that p > —oo. Therefore, we
deduce from the pointwise convergence of the sequence in (3) that for any t € R

exp (itﬂ) = exp (itﬁ).
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Thus, we get that for any ¢t € R
t(g—p) =0 (mod 27)

which implies that g = 7. In other words, p:= lim pu,, exists. As a consequence of (1), we
- n— oo

get that for any ¢t € R
202 )

ex(t) = exp (itﬂ T

and thus, X ~ N(u,o?).

(b) Since (X,,)nen converges in probability to X, (X,, — X)nen converges in probability to 0 and
hence (X,, — X)nen converges in distribution to 0.
Fix any n € N. The sequence (X,, — Xy )ren converges in probability to X,, — X and hence
(X, — Xk )ren converges in distribution to X,, — X. Now, since by assumption (X, )nen is a
Gaussian process, we get that for each k, X,, — X} is normal distributed. Thus, we deduce
from part a) that X,, — X is normal distributed. Since n € N was arbitrarily chosen, we get
that (X,, — X)nen is a sequence of Gaussian random variables. Moreover, since (X,, — X )pen
converges in distribution to 0, we deduce again from a) that

E[X, —X]—0 and Var(X,—X)—0 as n— occ.
As a consequence, we get directly the L? convergence of X,, to X, since

1X,, — X||22 = E[|X,, — X|?] = (E[X,, — X])® + Var(X,, — X).
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Exercise 3.4 Matlab Exercise The goal of this exercise is illustrate the Wiener-Lévy represen-
tation of Brownian motion. Therefore, for n € N let ¢,, . and ¢y denote the Schauder functions,
ie.,

gbo(t) =t
¢’ﬂ7k(t) = 2n/2(t - (k - 1)2_n>IJ2k—1,n+l - 2n/2(t - k2_n)1~]2k,n+l (t)’

where I4(t) denotes the indicator function on A and
Jen = (k—1)27" k27", for k=1,...,2"

That is, the graph of ¢y, i, is a triangle over Jj ,, with its peak of height 2-"/2=1 at the middle point
(2k — 1)2_(”+1). Moreover, let Yy and Y, ;, be i.i.d standard normal random variables and define

for N < oo
N 27

W = Yodo(t) + D> Vo ntni(t).
n=0 k=1
We know from the lecture that W° is well-defined and is a Brownian motion.
Simulate 10 sample paths of the process W with N = 12. In this exercise you can set T = 1 and
use an equidistant time grid with 2000 grid points, i.e., t; =i/M,i =0,...,M = 2 - 103.
Hint:

e First write a function schauderfunction(n,k,t) which computes the schauder functions for
given n, k and t

e Figure out how many iid normal random variables you need and compute W by sequentially
adding the new increments

Solution 3.4 Matlab Files

function bmscex34
% In this exercise we simulate Brownian motion using the Wiener—Levy
% Representation (see Corollary 1.(5.16) in the lecture notes)

% upper bound on n

nmax=12;

% number of iid normal variables

N=sum (2. [1:nmax]) ;

% number of sample paths

M=10;

% final time

T=1;

% number of grid points

gridpoi=2000;

% time grid

grid=0:T/gridpoi:T;

% iid std normal random variables

Y=randn (N,M) ;

% output matrix (N,M)=(N*1)*(1«M) matrix, initialize for n=0: Y Oxphi 0
(t)

out=grid "«randn (1 ,M);

% use the definition of WN

for n=1:nmax

for k=1:(2"n)
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% formula T.(5.8)
out=out+(schauderba (n,k, grid)) '*Y (2" (n—1)+k,:) ;
end
end
plot (grid ,out)
title ('BM with Wiener—Levy representation’);
xlabel ("time ") ;
ylabel ("value’);
end

function [value]=schauderba(n,k,t)

% the function implements the schauderbasis function see
(5.7)

indl=t> (2xk—2)*%2"(—(n+1));

ind2=t<= (2xk—1)%2"(—(n+1));

ind3=1-ind2;
ind4d=t<=2+k*2"(—(n+1));

% Definition of the Schauder basis function definition I

value=(ind1l.%ind2).%27(n/2) .%(t—(k=1)*2"(—-n)) ...
—(ind3.xind4).%27(n/2) .x(t—k*2"(—n));

end
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