Brownian Motion and Stochastic Calculus

Exercise sheet 4

Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than March 24th

Exercise 4.1 Let W be a Brownian motion on $[0, \infty)$ and $S_{0}>0, \sigma>0, \mu \in \mathbb{R}$ constants. The stochastic process $S=\left(S_{t}\right)_{t \geq 0}$ given by

$$
S_{t}=S_{0} \exp \left(\sigma W_{t}+\left(\mu-\sigma^{2} / 2\right) t\right)
$$

is called geometric Brownian motion.
(a) Prove that for $\mu \neq \sigma^{2} / 2$, we have

$$
\lim _{t \rightarrow \infty} S_{t}=+\infty \quad P \text {-a.s. or } \quad \lim _{t \rightarrow \infty} S_{t}=0 \quad P \text {-a.s. }
$$

When do the respective cases arise?
(b) Discuss the behaviour of S_{t} as $t \rightarrow \infty$ in the case $\mu=\sigma^{2} / 2$.
(c) For $\mu=0$, show that S is a martingale, but not uniformly integrable.

Exercise 4.2 Consider two stopping times σ, τ on a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), P\right)$. The goal of this exercise is to show that

$$
E\left[E\left[\cdot \mid \mathscr{F}_{\sigma}\right] \mid \mathcal{F}_{\tau}\right]=E\left[\cdot \mid \mathcal{F}_{\sigma \wedge \tau}\right]=E\left[E\left[\cdot \mid \mathcal{F}_{\tau}\right] \mid \mathcal{F}_{\sigma}\right] \quad P \text {-a.s. }
$$

i.e., the operators $E\left[\cdot \mid \mathcal{F}_{\tau}\right]$ and $E\left[\cdot \mid \mathcal{F}_{\sigma}\right]$ commute and their composition equals $E\left[\cdot \mid \mathcal{F}_{\sigma \wedge \tau}\right]$.

Remark: For arbitrary sub- σ-algebras $\mathcal{G}, \mathcal{G}^{\prime} \subset \mathcal{F}$, the conditional expectations $E\left[E[\cdot \mid \mathcal{G}] \mid \mathcal{G}^{\prime}\right]$, $E\left[E\left[\cdot \mid \mathcal{G}^{\prime}\right] \mid \mathcal{G}\right]$ and $E\left[\cdot \mid \mathcal{G} \cap \mathcal{G}^{\prime}\right]$ do not coincide in general.
(a) Show that $\sigma \wedge \tau$ is a stopping time and $\mathcal{F}_{\sigma \wedge \tau}=\mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$.
(b) Show that if $A \in \mathcal{F}_{\sigma}$, then $A \cap\{\sigma \leq \tau\}$ and $A \cap\{\sigma<\tau\}$ belong to \mathcal{F}_{τ}.

Hint: For the second assertion, use that $a<b$ if and only if there is a rational q such that $a \leq q<b$.
(c) Conclude that $\{\sigma \leq \tau\},\{\sigma<\tau\} \in \mathcal{F}_{\sigma \wedge \tau}$.
(d) Show that $E\left[Y \mid \mathcal{F}_{\tau}\right]$ is $\mathcal{F}_{\sigma \wedge \tau \text {-measurable if }} Y$ is an integrable \mathcal{F}_{σ}-measurable random variable. Conclude (\star).
(e) Let $M=\left(M_{t}\right)_{t \geq 0}$ be a right-continuous martingale. Show that the stopped process $M^{\tau}=$ $\left(M_{\tau \wedge t}\right)_{t \geq 0}$ is again a martingale.
Hint: Use (\star) and the stopping theorem.
Exercise 4.3 Let $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}\right)$ a filtered probability space. Take N a continuous positive martingale (i.e. almost surely $N_{t} \geq 0$) with $N_{0}=1$ and $N_{t} \rightarrow 0$ as $t \rightarrow \infty$.
(a) Show one example of a martingale satisfying this conditions.
(b) Show that for all $a>1, T_{a}:=\inf \left\{t \geq 0, N_{t}=a\right\}$ is a stopping time.
(c) Use the stopping time theorem to show that $\sup _{t \geq 0} N_{t} \stackrel{l a w}{=} 1 / U$, where U is a uniform random variable.
Hint: It may be useful to note that $\left\{\sup _{t \geq 0} N_{t} \geq a\right\}=\left\{T_{a}<\infty\right\}$.

