Brownian Motion and Stochastic Calculus

Exercise sheet 4

 $\label{eq:Please hand in your solutions during exercise \ class \ or \ in \ your \ assistant's \ box \ in \ HG \ E65 \ no \ latter \ than \\ March \ 24th$

Exercise 4.1 Let W be a Brownian motion on $[0, \infty)$ and $S_0 > 0$, $\sigma > 0$, $\mu \in \mathbb{R}$ constants. The stochastic process $S = (S_t)_{t \geq 0}$ given by

$$S_t = S_0 \exp\left(\sigma W_t + (\mu - \sigma^2/2)t\right)$$

is called geometric Brownian motion.

(a) Prove that for $\mu \neq \sigma^2/2$, we have

 $\lim_{t \to \infty} S_t = +\infty \quad P\text{-a.s.} \quad \text{or} \quad \lim_{t \to \infty} S_t = 0 \quad P\text{-a.s.}$

When do the respective cases arise?

- (b) Discuss the behaviour of S_t as $t \to \infty$ in the case $\mu = \sigma^2/2$.
- (c) For $\mu = 0$, show that S is a martingale, but not uniformly integrable.

Exercise 4.2 Consider two stopping times σ, τ on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$. The goal of this exercise is to show that

$$E[E[\cdot |\mathcal{F}_{\sigma}]|\mathcal{F}_{\tau}] = E[\cdot |\mathcal{F}_{\sigma \wedge \tau}] = E[E[\cdot |\mathcal{F}_{\tau}]|\mathcal{F}_{\sigma}] \quad P\text{-a.s.}, \tag{(\star)}$$

i.e., the operators $E[\cdot |\mathcal{F}_{\tau}]$ and $E[\cdot |\mathcal{F}_{\sigma}]$ commute and their composition equals $E[\cdot |\mathcal{F}_{\sigma \wedge \tau}]$. *Remark:* For arbitrary sub- σ -algebras $\mathcal{G}, \mathcal{G}' \subset \mathcal{F}$, the conditional expectations $E[E[\cdot |\mathcal{G}]|\mathcal{G}']$, $E[E[\cdot |\mathcal{G}']|\mathcal{G}]$ and $E[\cdot |\mathcal{G} \cap \mathcal{G}']$ do **not** coincide in general.

- (a) Show that $\sigma \wedge \tau$ is a stopping time and $\mathcal{F}_{\sigma \wedge \tau} = \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$.
- (b) Show that if A ∈ 𝔅_σ, then A ∩ {σ ≤ τ} and A ∩ {σ < τ} belong to 𝔅_τ. *Hint:* For the second assertion, use that a < b if and only if there is a rational q such that a ≤ q < b.</p>
- (c) Conclude that $\{\sigma \leq \tau\}, \{\sigma < \tau\} \in \mathcal{F}_{\sigma \wedge \tau}$.
- (d) Show that $E[Y|\mathcal{F}_{\tau}]$ is $\mathcal{F}_{\sigma\wedge\tau}$ -measurable if Y is an integrable \mathcal{F}_{σ} -measurable random variable. Conclude (\star).
- (e) Let $M = (M_t)_{t \ge 0}$ be a right-continuous martingale. Show that the stopped process $M^{\tau} = (M_{\tau \land t})_{t \ge 0}$ is again a martingale. *Hint:* Use (\star) and the stopping theorem.

Exercise 4.3 Let $(\Omega, \mathcal{F}, \mathcal{F}_t)$ a filtered probability space. Take N a continuous positive martingale (i.e. almost surely $N_t \ge 0$) with $N_0 = 1$ and $N_t \to 0$ as $t \to \infty$.

- (a) Show one example of a martingale satisfying this conditions.
- (b) Show that for all a > 1, $T_a := \inf\{t \ge 0, N_t = a\}$ is a stopping time.
- (c) Use the stopping time theorem to show that $\sup_{t\geq 0} N_t \stackrel{law}{=} 1/U$, where U is a uniform random variable.

Hint: It may be useful to note that $\{\sup_{t>0} N_t \ge a\} = \{T_a < \infty\}.$