Brownian Motion and Stochastic Calculus

Exercise sheet 4

Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than March 24th

Exercise 4.1 Let W be a Brownian motion on $[0, \infty)$ and $S_0 > 0$, $\sigma > 0$, $\mu \in \mathbb{R}$ constants. The stochastic process $S = (S_t)_{t>0}$ given by

$$S_t = S_0 \exp\left(\sigma W_t + (\mu - \sigma^2/2)t\right)$$

is called geometric Brownian motion.

(a) Prove that for $\mu \neq \sigma^2/2$, we have

$$\lim_{t \to \infty} S_t = +\infty \quad P\text{-a.s.} \quad \text{or} \quad \lim_{t \to \infty} S_t = 0 \quad P\text{-a.s.}$$

When do the respective cases arise?

- (b) Discuss the behaviour of S_t as $t \to \infty$ in the case $\mu = \sigma^2/2$.
- (c) For $\mu = 0$, show that S is a martingale, but not uniformly integrable.

Solution 4.1

- (a) Noting that a.s. $W_t/t \to 0$ we have that:
 - If $(\mu \sigma^2/2) > 0$ a.s. $\sigma W_t + (\mu \sigma^2/2) \to \infty$, thus $\lim S_t = \infty$.
 - If $(\mu \sigma^2/2) < 0$ a.s. $\sigma W_t + (\mu \sigma^2/2) \rightarrow -\infty$, thus $\lim S_t = 0$.
- (b) The fact that a.s. $\liminf B_t = -\infty$ and $\limsup B_t = \infty$ implies that when $\mu = \sigma^2/2$, $\liminf S_t = 0$ and $\limsup S_t = \infty$.
- (c) Note that if $s \leq t$ we have that $W_t W_s$ is independent of \mathcal{F}_s and follows the law of a centred normal with variance t s

$$\mathbb{E}\left[S_t \mid \mathcal{F}_s\right] = S_0 \mathbb{E}\left[\exp(\sigma(W_t - W_s) + \sigma W_s - \sigma^2 t/2) \mid \mathcal{F}_s\right]$$

= $S_0 \exp(\sigma W_s - \sigma^2 s/2) \mathbb{E}\left[\exp(\sigma(W_t - W_s) - \sigma^2 (t-s)/2\right] = S_s.$

Thus S_t is a martingale that converges to 0 a.s.. To see it is not uniformly integrable suppose it is. We would have that $S_0 = \mathbb{E} [\lim_{t \to 0} S_t] = 0$. **Exercise 4.2** Consider two stopping times σ, τ on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$. The goal of this exercise is to show that

$$E[E[\cdot |\mathcal{F}_{\sigma}]|\mathcal{F}_{\tau}] = E[\cdot |\mathcal{F}_{\sigma \wedge \tau}] = E[E[\cdot |\mathcal{F}_{\tau}]|\mathcal{F}_{\sigma}] \quad P\text{-a.s.}, \tag{(\star)}$$

i.e., the operators $E[\cdot |\mathcal{F}_{\tau}]$ and $E[\cdot |\mathcal{F}_{\sigma}]$ commute and their composition equals $E[\cdot |\mathcal{F}_{\sigma \wedge \tau}]$. *Remark:* For arbitrary sub- σ -algebras $\mathcal{G}, \mathcal{G}' \subset \mathcal{F}$, the conditional expectations $E[E[\cdot |\mathcal{G}]|\mathcal{G}']$, $E[E[\cdot |\mathcal{G}']|\mathcal{G}]$ and $E[\cdot |\mathcal{G} \cap \mathcal{G}']$ do **not** coincide in general.

- (a) Show that $\sigma \wedge \tau$ is a stopping time and $\mathcal{F}_{\sigma \wedge \tau} = \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$.
- (b) Show that if A ∈ 𝔅_σ, then A ∩ {σ ≤ τ} and A ∩ {σ < τ} belong to 𝔅_τ. Hint: For the second assertion, use that a < b if and only if there is a rational q such that a ≤ q < b.</p>
- (c) Conclude that $\{\sigma \leq \tau\}, \{\sigma < \tau\} \in \mathcal{F}_{\sigma \wedge \tau}$.
- (d) Show that $E[Y|\mathcal{F}_{\tau}]$ is $\mathcal{F}_{\sigma\wedge\tau}$ -measurable if Y is an integrable \mathcal{F}_{σ} -measurable random variable. Conclude (\star).
- (e) Let $M = (M_t)_{t \ge 0}$ be a right-continuous martingale. Show that the stopped process $M^{\tau} = (M_{\tau \land t})_{t \ge 0}$ is again a martingale. Hint: Use (\star) and the stopping theorem.

Solution 4.2

(a) Note that $\{\sigma \land \tau \leq t\} = \{\sigma \leq t\} \cup \{\tau \leq t\}$, because each of this element belongs to \mathcal{F}_t we have that $\sigma \land \tau$ is a stopping time.

For the second part let us firt prove that $\mathcal{F}_{\sigma\wedge\tau} \subseteq \mathcal{F}_{\sigma} \cap \mathcal{F}_{\sigma}$. Take $A \in \mathcal{F}_{\sigma\wedge\tau}$, by definitioni $(A \cap \{\sigma \land \tau \leq t\} \in \mathcal{F}_t \text{ from where it follows that,}$

$$A \cap \{\sigma \le t\} = (A \cap \{\sigma \land \tau \le t\}) \cap (\{\sigma \le t\}) \in \mathcal{F}_t.$$

Thus $\mathcal{F}_{\sigma \wedge \tau} \subseteq \mathcal{F}_s$, doing the same thing for τ we have that $\mathcal{F}_{\sigma \wedge \tau} \subseteq \mathcal{F}_s \cap \mathcal{F}_t$. For the other inclusion, let $A \in \mathcal{F}_{\sigma} \cap \mathcal{F}_{\tau}$. We see that

$$A \cap \{\sigma \land \tau \le t\} = A \cap \left(\{\sigma \le t\} \cup \{\tau \le t\}\right) = \left(A \cap \{\sigma \le t\}\right) \cup \left(A \cap \{\tau \le t\}\right) \in \mathcal{F}_t$$

and thus, $A \in \mathcal{F}_{\sigma \wedge \tau}$.

(b) Take $A \in \mathcal{F}_{\sigma}$. To see that $A \cap \{\sigma < \tau\} \in \mathcal{F}_{\tau}$ note that

$$(A \cap \{\sigma < \tau\}) \cap \{\tau \le t\} = (A \cap \{\tau \le t\}) \cap \bigcup_{q \in [0,t] \cap \mathbb{Q}} \{\sigma \le q\} \cap \{q < \tau\} \in \mathcal{F}_t.$$

To see that $A \cap \{\sigma \leq \tau\} \in \mathcal{F}_{\tau}$, note that thanks to (a) for any $t \geq 0$, $\sigma \wedge t$ is a stopping time and $\mathcal{F}_{\sigma \wedge t} \subseteq \mathcal{F}_t$, thus $\sigma \wedge t$ and $\tau \wedge t$ are \mathcal{F}_t measurable. Then for any $t \geq 0$,

$$A \cap \{\sigma \le \tau\} \cap \{\tau \le t\} = (A \cap \{\tau \le t\}) \cap \{\sigma \land t \le \tau \land t\} \in \mathcal{F}_t$$

This is because the first and the second term belong to \mathcal{F}_t .

(c) Let $t \ge 0$. By taking $A = \Omega$ in part (b) we know that $\{\sigma \le \tau\}, \{\sigma < \tau\} \in \mathcal{F}_{\tau}$ and $\{\tau \le \sigma\}, \{\tau < \sigma\} \in \mathcal{F}_{\sigma}$. Thus by taking complements $\{\sigma \le \tau\}, \{\sigma < \tau\} \in \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma} = \mathcal{F}_{\sigma \wedge \tau}$.

(d) Let us first prove that if Y is \mathcal{F}_{σ} -measurable then $Y\mathbf{1}_{\{\sigma\leq\tau\}}$ is $\mathcal{F}_{\tau\wedge\sigma}$ measurable. Due to the fact that $\{\sigma\leq\tau\}\in\mathcal{F}_{\sigma}$ we have that $Y\mathbf{1}_{\{\sigma\leq\tau\}}$ is \mathcal{F}_{σ} measurable. Now let us prove that it is \mathcal{F}_{τ} -measurable. To do this note that thanks to problem (b) this is true for any step function, i.e., if $A_1, ..., A_n \in \mathcal{F}_{\sigma}$ and $\lambda_1, ..., \lambda_n \in \mathbb{R}$ then taking $Y = \sum_{i=1}^n \lambda_i \mathbf{1}_{A_i}$ we have that $Y\mathbf{1}_{\{\sigma\leq\tau\}}$ is \mathcal{F}_{τ} -measurable. For a general Y, we take $Y^{(n)}$ a sequence of step function converging to Y, we have that $Y^{(n)}\mathbf{1}_{\{\sigma\leq\tau\}} \to Y\mathbf{1}_{\{\sigma\leq\tau\}}$. Thus, $Y\mathbf{1}_{\{\sigma\leq\tau\}}$ is \mathcal{F}_{τ} -measurable. We also have that if Z is \mathcal{F}_{τ} -measurable, $Z\mathbf{1}_{\{\tau<\sigma\}}$ is $\mathcal{F}_{\sigma\wedge\tau}$ -measurable.

Now, let us see that

$$\mathbb{E}\left[Y \mid \mathcal{F}_{\tau}\right] = \mathbb{E}\left[Y \mathbf{1}_{\{\tau < \sigma\}} \mid \mathcal{F}_{\tau}\right] + \mathbb{E}\left[Y \mathbf{1}_{\{\sigma \leq \tau\}} \mid \mathcal{F}_{\tau}\right] = \mathbb{E}\left[Y \mid \mathcal{F}_{\tau}\right] \mathbf{1}_{\{\tau < \sigma\}} + Y \mathbf{1}_{\{\sigma \leq \tau\}}$$

each term is $\mathcal{F}_{\sigma\wedge\tau}$ -measurable from where we conclude that $\mathbb{E}[Y \mid \mathcal{F}_{\tau}]$ is $\mathcal{F}_{\sigma\wedge\tau}$ -measurable. To see (*) it is just enough to note that for any integrable r.v. Z, $\mathbb{E}[\mathbb{E}[Z \mid \mathcal{F}_{\sigma}] \mid \mathcal{F}_{\tau}]$ is

For see (*) It is just enough to note that for any integrable r.v. Z, $\mathbb{E}[\mathbb{E}[Z | \mathcal{F}_{\sigma}] | \mathcal{F}_{\tau}]$ is $\mathcal{F}_{\sigma\wedge\tau}$ -measurable, thus it is equal to $\mathbb{E}[\mathbb{E}[Z | \mathcal{F}_{\sigma}] | \mathcal{F}_{\tau\wedge\sigma}] = \mathbb{E}[Z | \mathcal{F}_{\sigma\wedge\tau}]$, thanks to the tower property.

(e) Take $s \ge t$ and note that $\tau \land s \le \tau \land t$ are bounded stopping times, then thanks to the Stopping theorem

$$\mathbb{E}\left[M_{\tau \wedge t} \mid \mathcal{F}_{s}\right] = \mathbb{E}\left[\mathbb{E}\left[M_{t} \mid \mathcal{F}_{\tau \wedge t}\right] \mid \mathcal{F}_{s}\right] = \mathbb{E}\left[M_{t} \mid \mathcal{F}_{s \wedge \tau}\right] = M_{\tau \wedge s}$$

where in the second equality we used (\star) .

Exercise 4.3 Let $(\Omega, \mathcal{F}, \mathcal{F}_t)$ a filtered probability space. Take N a continuous positive martingale (i.e. almost surely $N_t \geq 0$) with $N_0 = 1$ and $N_t \to 0$ as $t \to \infty$.

- (a) Show one example of a martingale satisfying this conditions.
- (b) Show that for all a > 1, $T_a := \inf\{t \ge 0, N_t = a\}$ is a stopping time.
- (c) Use the stopping time theorem to show that $\sup_{t\geq 0} N_t \stackrel{law}{=} 1/U$, where U is a uniform random variable. Hint: It may be useful to note that $\{\sup_{t\geq 0} N_t \geq a\} = \{T_a < \infty\}$.

Solution 4.3

- (a) Take $\mu = 0$ and use S_t of Exercise 4.1.
- (b) Note that because N is continuous and $N_0 = 1$

$$\{T_a \le t\} = \bigcap_{\epsilon \in (0,1) \cap \mathbb{Q}} \bigcup_{q \in (0,t) \cap \mathbb{Q}} \{N_q \ge a - \epsilon\} \in \mathcal{F}_t.$$

(c) We have that $N_{t \wedge T_a}$ is a bounded martingale (see exercise 2. (e)) thus bounded convergence theorem

$$1 = \mathbb{E}\left[N_t \wedge T_a\right] \stackrel{t \to \infty}{\to} \mathbb{E}\left[N_{T_a} \mathbf{1}_{\{T_a < \infty\}}\right] = a \mathbb{P}(T_a < \infty).$$

Thus, thanks to the hint $\mathbb{P}(\sup N_t \ge a) = 1/a$, i.e., $\mathbb{P}(1/\sup N_t \le a) = a$ which is exactly the law of a uniform random variable.