Brownian Motion and Stochastic Calculus

Exercise sheet 5

Please hand in your solutions during exercise class or in your assistant's box in HG E65 no latter than March 31th

Exercise 5.1 Let $(W_t)_{t\geq 0}$ be a Brownian motion. Moreover, let \mathbb{F}^0 be the (raw) filtration generated by W and \mathbb{F} its right-continuous modification. Let τ be an \mathbb{F} -stopping time with $\tau < \infty$ P-a.s. and $\widetilde{W}_{\cdot} := W_{\tau+\cdot} - W_{\tau}$. Prove that \widetilde{W} is independent of \mathcal{F}_{τ} .

Hint: Use the monotone class theorem and approximate τ from above as on page 46 of the script.

Exercise 5.2 Let $W = (W_t)_{t\geq 0}$ be a Brownian motion in \mathbb{R} and define the *integrated Brownian* motion $Y = (Y_t)_{t\geq 0}$ by $Y_t = \int_0^t W_s ds$. Moreover, let $\mathbb{F}^W := (\mathcal{F}^W_t)_{t\geq 0}$ be the raw filtration generated by W.

(a) For each $h \ge 0$, show that the pair (W_h, Y_h) has a two-dimensional normal distribution with mean zero and covariance matrix given by

$$\begin{pmatrix} h & h^2/2 \\ h^2/2 & h^3/3 \end{pmatrix}.$$

Hint: First, show that (W_h, Y_h) has a two-dimensional normal distribution by approximating Y_h by Riemann sums and using Exercise **3-3**. Second, use Fubini's theorem to compute the covariance matrix.

(b) Show that the pair (W, Y) is a (homogeneous) Markov process with state space \mathbb{R}^2 , filtration \mathbb{F}^W and transition semigroup $(K_h)_{h>0}$ given by

$$K_h((w,y),\cdot) = \mathcal{N}\left(\begin{pmatrix} w\\ y+hw \end{pmatrix}, \begin{pmatrix} h & h^2/2\\ h^2/2 & h^3/3 \end{pmatrix}\right), \quad h \ge 0.$$

(c) Show that Y alone is **not** a Markov process with respect to \mathbb{F}^W .

Exercise 5.3

(a) Prove that *P*-almost all Brownian paths are nowhere on [0, 1] Hölder-continuous of order α , for any $\alpha > \frac{1}{2}$.

Hint: Take any $M \in \mathbb{N}$ satisfying $M(\alpha - \frac{1}{2}) > 1$ and show that the set $\{B_{\cdot}(\omega) \text{ is } \alpha\text{-H\"older}$ at some $s \in [0,1]\}$ is contained in the set $\bigcup_{C \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} \bigcup_{k=0,\dots,n-1} \bigcap_{j=1}^{M} \left\{ |B_{\frac{k+j}{n}}(\omega) - B_{\frac{k+j-1}{n}}(\omega)| \leq C \frac{1}{n^{\alpha}} \right\}.$

(b) The Kolmogorov-Čentsov theorem states that a process X on [0, T] satisfying

$$E[|X_t - X_s|^{\alpha}] \le C |t - s|^{1+\beta}, \quad s, t \in [0, T],$$

where $\alpha, \beta, C > 0$, has a version which is locally Hölder-continuous of order γ for all $\gamma < \beta/\alpha$. Use this to deduce that Brownian motion has for every $\gamma < 1/2$ a version which is locally Hölder-continuous of order γ .

Remark: One can also show that the Brownian paths are *not* Hölder-continuous of order 1/2. The exact modulus of continuity was found by P. Lévy.